[1] Oh, J., Oh, B. L., Lee, K. U., Chae, J. H., & Yun,
K. (2020). Identifying schizophrenia using
structural MRI with a deep learning algorithm.
Frontiers in psychiatry, 11, 16.
[2] Oh, S. L., Vicnesh, J., Ciaccio, E. J., Yuvaraj,
R., & Acharya, U. R. (2019). Deep
convolutional neural network model for
automated diagnosis of schizophrenia using
EEG signals. Applied Sciences, 9(14), 2870.
[3] Shalbaf, A., Bagherzadeh, S., & Maghsoudi, A.
(2020). Transfer learning with deep
convolutional neural network for automated
detection of schizophrenia from EEG signals.
Physical and Engineering Sciences in Medicine,
43(4), 1229-1239.
[4] Siuly, S., Khare, S. K., Bajaj, V., Wang, H., &
Zhang, Y. (2020). A computerized method for
automatic detection of schizophrenia using EEG
signals. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 28(11), 2390-
2400.
[5] Boostani, R., Sadatnezhad, K., & Sabeti, M.
(2009). An efficient classifier to diagnose of
schizophrenia based on the EEG signals. Expert
Systems with Applications, 36(3), 6492-6499.
[6] Srinivasagopalan, S., Barry, J., Gurupur, V., &
Thankachan, S. (2019). A deep learning
approach for diagnosing schizophrenic patients.
Journal of Experimental & Theoretical
Artificial Intelligence, 31(6), 803-816.
[7] Jahmunah, V., Oh, S. L., Rajinikanth, V.,
Ciaccio, E. J., Cheong, K. H., Arunkumar, N.,
& Acharya, U. R. (2019). Automated detection
of schizophrenia using nonlinear signal
processing methods. Artificial intelligence in
medicine, 100, 101698.
[8] Yan, W., Calhoun, V., Song, M., Cui, Y., Yan,
H., Liu, S., ... & Sui, J. (2019). Discriminating
schizophrenia using recurrent neural network
applied on time courses of multi-site FMRI data.
EBioMedicine, 47, 543-552.
[9] Prabhakar, S. K., Rajaguru, H., & Kim, S. H.
(2020). Schizophrenia EEG signal classification
based on swarm intelligence computing.
Computational Intelligence and Neuroscience,
2020.
[10]Krishnan, P. T., Raj, A. N. J., Balasubramanian,
P., & Chen, Y. (2020). Schizophrenia detection
using MultivariateEmpirical Mode
Decomposition and entropy measures from
multichannel EEG signal. Biocybernetics and
Biomedical Engineering, 40(3), 1124-1139.
[11]Aslan, Z., & Akın, M. (2020). Automatic
detection of schizophrenia by applying deep
learning over spectrogram images of EEG
signals.
[12]Sharma, M., & Acharya, U. R. (2021).
Automated detection of schizophrenia using
optimal wavelet-based l 1 norm features
extracted from single-channel EEG. Cognitive
Neurodynamics, 15(4), 661-674.
[13]Akbari, H., Ghofrani, S., Zakalvand, P., &
Sadiq, M. T. (2021). Schizophrenia recognition
based on the phase space dynamic of EEG
signals and graphical features. Biomedical
Signal Processing and Control, 69, 102917.
[14]Ghonchi, H., Fateh, M., Abolghasemi, V.,
Ferdowsi, S., & Rezvani, M. (2020). Deep
recurrent–convolutional neural network for
classification of simultaneous EEG–fNIRS
signals. IET Signal Processing, 14(3), 142-153.
[15]Hornero, R., Abásolo, D., Jimeno, N., Sánchez,
C. I., Poza, J., & Aboy, M. (2006). Variability,
regularity, and complexity of time series
generated by schizophrenic patients and control
subjects. IEEE Transactions on Biomedical
Engineering, 53(2), 210-218.
[16]Acharya, U. R., Fujita, H., Lih, O. S., Adam, M.,
Tan, J. H., & Chua, C. K. (2017). Automated
detection of coronary artery disease using
different durations of ECG segments with
convolutional neural network. KnowledgeBased Systems, 132, 62-71.
[17]Xu, S., Wang, Z., Sun, J., Zhang, Z., Wu, Z.,
Yang, T., ... & Cheng, C. (2020). Using a deep
recurrent neural network with EEG signal to
detect Parkinson’s disease. Annals of
translational medicine, 8(14).
[18]Kim, J. W., Lee, Y. S., Han, D. H., Min, K. J.,
Lee, J., & Lee, K. (2015). Diagnostic utility of
quantitative EEG in un-medicated
schizophrenia. Neuroscience letters, 589, 126-
131.
[19]Santos-Mayo, L., San-José-Revuelta, L. M., &
Arribas, J. I. (2016). A computer-aided
diagnosis system with EEG based on the P3b
wave during an auditory odd-ball task in
schizophrenia. IEEE transactions on biomedical
engineering, 64(2), 395-407