تحلیل ریخت شناسی بطن های مغزی از روی تصاویر MRI با خوشه بند فازی بهینه شده توسط الگوریتم شاهین هریس (HHO) و ویژگی‌های کانال تجمیعی (ACF)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

2 گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

ریخت‌شناسی بطن‌ها در مطالعات هیدروسفالی، اسکیزوفرنی، تومورها، تروما، بیماری آلزایمر، بیماری پارکینسون، پیری و آتروفی جهت تشخیص بیماری‌های عصبی مانند سکته مغزی، زوال عقل و بیماری هانتینگتون مورد بررسی قرار گرفته می‌شود. در این پژوهش، روشی تمام خودکار جهت بررسی مورفومتریک بطن‌های مغزی ارائه می‌شود. بخش بندی بطن های مغزی گامی مهم جهت آشکارسازی لندمارک های بطن های مغزی است. همچنین، تخمین اولیه ناحیه بطنی مغزی می تواند در بخش بندی دقیق مرز بطن های مغزی مؤثر باشد. برای این منظور، خوشه بند فازی (FCM) بهینه شده با الگوریتم شاهین هریس (HHO) و ویژگی‌های کانال تجمیعی (ACF) به کار گرفته می‌شوند. جهت اندازه گیری شاخص‌های خطی بطن های مغزی شامل ایوانز، دودمی، دودمی-قدامی، دودمی-گیجگاهی و شماره هاکمن نیازمند مکان یابی تعدادی لندمارک بر روی تصاویر MRI هستیم. این فرآیند براساس ویژگی های هندسی بطن های مغزی و به کارگیری تبدیل هاف انجام می شود. نتایج پیاده‌سازی نشان می دهند که الگوریتم پیشنهادی با دقت 90%، حساسیت 82% و ویژگی 99% بهترین عمل کرد را در بخش بندی بطن های مغزی نسبت به سایر روش های مقایسه شده دارد. همچنین، نتایج نشان می دهند که دقت اندازه گیری الگوریتم پیشنهادی در شاخص‌های ذکر شده به ترتیب 98%، 77%، 78%، 78% و 94% است.

کلیدواژه‌ها


عنوان مقاله [English]

Morphological Analysis of Cerebral Ventricles using MRI Images with Fuzzy Clustering Optimized by Harris-Hawk Optimization (HHO) and Aggregate Channel Features (ACF)

نویسندگان [English]

  • SeyedHamed Esfahani 1
  • Mousa Shamsi 2
  • Ali Fahmi Jafargholkhanloo 2
  • Akbar Alipour Sifar 1
1 Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.
2 Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

The morphology of the ventricles is used in studies of hydrocephalus, schizophrenia, tumors, trauma, Alzheimer's disease, Parkinson's disease, aging and atrophy to diagnose neurological diseases such as stroke, dementia and Huntington's disease. In this study, an automatic method for morphometric analysis of cerebral ventricles is proposed. Segmentation of cerebral ventricles is an important step to detect the landmarks of cerebral ventricles. Furthermore, the initial estimation of the cerebro-ventricular area can be effective in the proper segmentation of the ventricles. In this regard, Fuzzy C-Means Clustering (FCM) optimized with Harris-Hawk Optimization (HHO) and Aggregate Channel Features (ACF) are used. In order to measure the linear indices of cerebral ventricles, including Evans Index, Bicaudate Ratio, Bicaudate-Frontal Index, Bicaudate-Temporal Index, and Huckman Number, locating a number of landmarks on MRI images is required. This process is based on the geometric features of cerebral ventricles and the use of Hough transformation. The implementation results demonstrate that the proposed algorithm has the best performance with precision 90%, sensitivity 82%, specificity 99%, peak signal-to-noise ratio 77/11, dice similarity coefficient 86%, Jaccard index 75% and contour matching score 92% in the segmentation of cerebral ventricles among other compared methods. Additionally, the results show that the measurement accuracy of the proposed algorithm in the mentioned morphometric linear indices is 97%, 74%, 77%, 76% and 92% respectively.

کلیدواژه‌ها [English]

  • Aggregate Channel Features
  • Cerebrospinal Fluid Abnormalities
  • Harris-Hawks Optimizer
  • Hough Transformation
  • Indices of Cerebral Ventricles
[1] T. Jayaraman, S. Reddy, M. Mahadevappa, A. Sadhu, and P. K. Dutta, "Modified distance regularized level set evolution for brain ventricles segmentation," Visual Computing for Industry, Biomedicine, and Art, vol. 3, no. 1, pp. 1-12, 2020.
[2] S. Polat, F. Y. Öksüzler, M. Öksüzler, A. G. Kabakci, and A. H. Yücel, "Morphometric MRI Study of the Brain Ventricles in Healthy Turkish Subjects," International Journal of Morphology, vol. 37, no. 2, 2019.
[3] K. Reinard et al., "Simple and reproducible linear measurements to determine ventricular
enlargement in adults," Surgical neurology
international, vol. 6, 2015.
[4] R. Wilk, E. Kluczewska, B. Syc, and G. Bajor, "Normative values for selected linear indices of the intracranial fluid spaces based on CT images of the head in children," Polish journal of radiology, vol. 76, no. 3, p. 16, 2011.
[5] M. Jamous, S. Sood, R. Kumar, and S. Ham, "Frontal and occipital horn width ratio for the evaluation of small and asymmetrical ventricles," Pediatric neurosurgery, vol. 39, no. 1, pp. 17-21, 2003.
[6] M. Schulz, B. Spors, and U.-W. Thomale, "Stented ndoscopic third ventriculostomy—indications and results," Child's Nervous System,
vol. 31, no. 9, pp. 1499-1507, 2015.
[7] A. K. Toma, E. Holl, N. D. Kitchen, and L. D. Watkins, "Evans' index revisited: the need for an alternative in normal pressure hydrocephalus," Neurosurgery, vol. 68, no. 4, pp. 939-944, 2011.
[8] R. A. Bermel, R. Bakshi, C. Tjoa, S. R. Puli, and L. Jacobs, "Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis," Archives of neurology, vol. 59, no. 2, pp. 275-280, 2002.
[9] M. Krawczyński, Norma kliniczna w pediatrii. Wydaw. Lekarskie PZWL, 2005.
[10] W. Maksymowicz, Neurochirurgia w zarysie. Wydawnictwo Lekarskie PZWL, 1999.
[11] W. Meese, W. Kluge, T. Grumme, and W. Hopfenmüller, "CT evaluation of the CSF spaces of healthy persons," Neuroradiology, vol. 19, no. 3, pp. 131-136, 1980.
[12] A. Kosourov, I. Gaĭvoronskiĭ, G. Rokhlin, I. Blagova, and A. Panfilenko, "In vivo assessment of various parameters of the brain ventricles with magnetic resonance tomography," Morfologiia (Saint Petersburg, Russia), vol. 122, no. 4, pp. 71-73, 2002.
[13] K. L. Narr et al., "Three-dimensional mapping of temporo-limbic regions and the lateral ventricles in schizophrenia: gender effects," Biological psychiatry, vol. 50, no. 2, pp. 84-97, 2001.
[14] Y. Xia, Q. Hu, A. Aziz, and W. L. Nowinski, "A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages," NeuroImage, vol. 21, no. 1, pp. 269-282, 2004.
[15] M. Meduri et al., "Morphometrical and morphological analysis of lateral ventricles in schizophrenia patients versus healthy controls," Psychiatry Research: Neuroimaging, vol. 183, no. 1, pp. 52-58, 2010.
[16] J. Drozd, A. Hayes, R. Moreland, A. Khan, M. Borrie, and R. Bartha, "Tracking brain ventricle expansion in Alzheimer's disease using combined intensity and shape-based segmentation," Alzheimer's & Dementia, vol. 8, no. 4, p. P21, 2012.
[17] P. Mishra, S. Agarwal, and U. Kiran, "A hybrid technique of medical image segmentation using DRLSE algorithm," KrishiSanskriti Publ, vol. 1, no. 5, pp. 52-53, 2014.
[18] H. Verma, D. Verma, and P. K. Tiwari, "A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image," Expert Systems with Applications, vol. 167, p. 114121, 2021.
[19] S. Tongbram, B. A. Shimray, L. S. Singh, and N. Dhanachandra, "A novel image segmentation approach using fcm and whale optimization algorithm," Journal of Ambient Intelligence and Humanized Computing, pp. 1-15, 2021.
[20] L. M. Ellingsen, S. Roy, A. Carass, A. M. Blitz, D. L. Pham, and J. L. Prince, "Segmentation and labeling of the ventricular system in normal pressure hydrocephalus using patch-based tissue classification and multi-atlas labeling," in Medical Imaging 2016: Image Processing, 2016, vol. 9784: International Society for Optics and Photonics, p. 97840G.
[21] B. Khorram and M. Yazdi, "A new optimized thresholding method using ant colony algorithm for MR brain image segmentation," Journal of digital imaging, vol. 32, no. 1, pp. 162-174, 2019.
[22] L. Manohar and K. Ganesan, "Diagnosis of schizophrenia disorder in MR brain images using multi-objective BPSO based feature selection with fuzzy SVM," Journal of medical and biological engineering, vol. 38, no. 6, pp. 917-932, 2018.
[23] D. Chitradevi and S. Prabha, "Analysis of Alzheimer disease using optimization techniques," in 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII), 2020: IEEE, pp. 1-5.
[24] D. Chitradevi, S. Prabha, and A. D. Prabhu, "Diagnosis of Alzheimer disease in MR brain images using optimization techniques," Neural Computing and Applications, vol. 33, no. 1, pp. 223-237, 2021.
[25] R. Bandyopadhyay, R. Kundu, D. Oliva, and R. Sarkar, "Segmentation of brain MRI using an altruistic Harris Hawks’ Optimization algorithm," Knowledge-Based Systems, vol. 232, p. 107468, 2021.
[26] A. Lenin Fred, S. Kumar, P. Padmanaban, B. Gulyas, and H. Ajay Kumar, "Fuzzy-crow search optimization for medical image segmentation," in Applications of hybrid metaheuristic algorithms for image processing: Springer, 2020, pp. 413-439.
[27] P. Dollár, R. Appel, S. Belongie, and P. Perona, "Fast feature pyramids for object detection," IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 8, pp. 1532-1545, 2014.
[28] B. T. Bastian and J. CV, "Integrated feature set using aggregate channel features and histogram of sparse codes for human detection," Multimedia Tools and Applications, vol. 79, no. 3, pp. 2931-2944, 2020.
[29] A. Fahmi Jafargholkhanloo and M. Shamsi, "Segmentation of Facial Color Images based on Fuzzy Clustering Optimized by Grey Wolf and Whale Algorithms," Journal of Soft Computing and Information Technology, vol. 10, no. 2, pp. 1-13, 2021.
[30] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, "Harris hawks optimization: Algorithm and applications," Future generation computer systems, vol. 97, pp. 849-872, 2019.
[31] P. Mukhopadhyay and B. B. Chaudhuri, "A survey of Hough Transform," Pattern Recognition, vol. 48, no. 3, pp. 993-1010, 2015.