[1] S. Soumya, S. Kumar, R. Naseem and S. Mohan, Automatic Text Summarization, In: Das V.V., Thankachan N. (eds) , Computational Intelligence and Information Technology. CIIT 2011, Communications in Computer and Information Science (CCIS), Springer, Berlin, Heidelberg, Volume 250, pp. 787-789, 2011.
[2] R. M. Aliguliyev, N. R. Isazade and N. Idris, COSUM: Text summarization based on clustering and optimization, Expert Systems: The Journal of Knowledge Engineering, Volume 36, Issue 1, 2019.
[3] H. Jing, Sentence Reduction for Automatic Text Summarization, Sixth Applied Natural Language Processing Conference. Association for Computational Linguistics, pp. 310–315, 2000.
[4] K. Knight and D. Marcu, Summarization beyond sentence extraction: A probabilistic approach to sentence compression, Artificial Intelligence, Volume 139, Issue 1, pp. 91-107, 2002.
[5] I. Mani, Automatic summarization, John Benjamin’s Publishing Company, Amsterdam/Philadelphia, 2001.
[6] P. Kouris, G. Alexandridis and A. Stafylopatis, Abstractive Text Summarization Based on Deep Learning and Semantic Content Generalization, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 5082–5092, 2019.
[7] A. See, P. J. Liu and Ch. D. Manning, Get To The Point: Summarization with Pointer-Generator Networks, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073-1083, 2017.
[8] S. Singhal and A. Bhattacharya, Abstractive Text Summarization, pp. 1-11, 2015.
[9] J.N. Madhuri and R. Ganesh Kumar, Extractive Text Summarization Using Sentence Ranking, 2019 International Conference on Data Science and Communication (IconDSC), IEEE, pp. 1-3, 2019.
[10] M. Gambhir and V. Gupta, Recent automatic text summarization techniques: a survey, Artificial Intelligence Review, Volume 47, Issue 1, pp. 1–66, 2017.
[11] S. Ghodratnama, A. Beheshti, M. Zakershahrak and F. Sobhanmanesh, Extractive document summarization based on dynamic feature space mapping, IEEE Access 2020, 8. [CrossRef], pp. 139084–139095, 2020.
[12] H. P. Luhn, The automatic creation of literature abstracts, IBM Journal of research and development, 2(2), pp. 159-165, 1958.
[13] H. P. Luhn, A statistical approach to mechanized encoding and searching of literary information, IBM J. Res. Dev.1957.1.[CrossRef] pp. 309–317, 1957.
[14] R. Mishra, J. Bian, M. Fiszman, C.R. Weir, S. Jonnalagadda, J. Mostafa and et al., Text summarization in the biomedical domain: A systematic review of recent research, J.Biomed. Inform. 52, pp. 457–467, 2014.
[15] S. Afantenos, V. Karkaletsis and P. Stamatopoulos, Summarization from medical documents: a survey, Artif. Intell. Med. 33 (2) pp. 157–177, 2005.
[16] V. Gupta and G.S. Lehal, A survey of text summarization extractive techniques, J. Emerg. Technol. Web Intell. 2, pp. 258–268, 2010.
[17] E. Lloret and M. Palomar, Text summarisation in progress: a literature review, Artif. Intell. Rev. 37 (1), pp. 1–41, 2012.
[18] R.A. García-Hernández, R. Montiel, Y. Ledeneva, E. Rendón and A. Gelbukh, Cruz, R. Text Summarization by Sentence Extraction Using Unsupervised Learning., In Proceedings of the Mexican International Conference on Artificial Intelligence, Atizapán de Zaragoza, Mexico, 27–31 October 2008; Springer: Berlin/Heidelberg, Germany, 2008.
[19] M. Fiszman, D. Demner-Fushman, H. Kilicoglu and T.C. Rindflesch, Automatic summarization of MEDLINE citations for evidence-based medical treatment: A topicoriented evaluation, J. Biomed. Inform. 42 (5), pp. 801–813, 2009.
[20] H. Zhang, M. Fiszman, D. Shin, C.M. Miller, G. Rosemblat and T.C. Rindflesch, Degree centrality for semantic abstraction summarization of therapeutic studies, J. Biomed. Inform. 44 (5), pp. 830–838, 2011.
[21] H. Christian, M.P. Agus and D. Suhartono, Single document automatic text summarization using term frequency-inverse document frequency (TF-IDF)., ComTech: Computer, Mathematics and Engineering Applications, 7(4), pp. 285-294, 2016.
[22] J. Ramos, Using tf-idf to determine word relevance in document queries., In Proceedings of the first instructional conference on machine learning, Vol. 242, pp.133-142, December 2003
[23] P. Bafna, D. Pramod, and A.Vaidya, Document clustering: TF-IDF approach., In 2016 International Conference on Electrical, Electronics, and Optimization Techniques IEEE (ICEEOT), pp. 61-66, March 2016.
[24] R. Mihalcea and P. Tarau, Textrank: Bringing order into text., In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, pp. 25–26, July 2004.
[25] P. Zha, X.Xu and M. Zuo, An Efficient Improved Strategy for the PageRank Algorithm., In Proceedings of the 2011 International Conference on Management and Service Science, Bangkok, Thailand, pp. 7–9, May 2011.
[26] N. Moratanch and S.A Chitrakala, survey on extractive text summarization. In Proceedings of the 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, pp. 10–11, January 2017.
[27] R. Mihalcea and P. Tarau, Textrank: Bringing order into text., In Proceedings of the 2004 conference on empirical methods in natural language processing, pp. 404-411, July 2004.
[28] S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine., 1998.
[29] C. Mallick, A. K. Das, M. Dutta and A. Sarkar, Graphbased text summarization using modified TextRank., In Soft Computing in Data Analytics. Springer,Singapore, pp. 137-146, 2019.
[30] F. Barrios, F. López, L. Argerich, and R. Wachenchauzer, Variations of the similarity function of textrank for automated summarization., arXiv preprint arXiv:1602.03606, 2016.
[31] L. Yao, Z. Pengzhou and Z. Chi, Research on
News Keyword Extraction Technology Based on TF-IDF and TextRank., In 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS). IEEE Computer Society , pp. 452-455, June 2019.
[32] R.K. Roul, J.K. Sahoo and K. Arora, Modified TF-IDF term weighting strategies for text
categorization., In 2017 14th IEEE India Council International Conference (INDICON), pp. 1-6, December 2017.
[33] Y.L. Chang and J.T. Chien, Latent Dirichlet learning for document summarization., In 2009 IEEE international conference on acoustics, speech and signal processing, pp. 1689-1692, April 2009.
[34] R. Arora and B. Ravindran, Latent Dirichlet allocation based multi-document summarization., In Proceedings of the second workshop on Analytics for noisy unstructured text data, pp. 91-97, July 2008.
[35] R. Kumar and K. Raghuveer, Legal document summarization using latent dirichlet allocation., International Journal of Computer Science Telecommunications. 3, pp. 114-117, 2012.
[36] A.C. Onwutalobi, Using Lexical Chains for Efficient Text Summarization., Available online: https://ssrn.com/abstract=3378072, accessed on 16 May 2009.
[37] J.L. Neto, A.A. Freitas and C.A.A. Kaestner, Automatic text summarization using a machine learning approach., In Proceedings of the Brazilian Symposium on Artificial Intelligence, Porto de Galinhas, Recife, Brazil, 11–14 November 2002, Springer: Berlin/Heidelberg, Germany, 2002.
[38] H.J. Jain, M.S. Bewoor and S.H. Patil, Context sensitive text summarization using k means clustering algorithm., Int. J. Soft Comput.Eng, 2,pp. 301–304, 2012.
[39] L.Yao, Z.Pengzhou and Z.Chi, Research on News Keyword Extraction Technology Based on TF-IDF and TextRank., In 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), pp. 452-455, June 2019.
[40] F. Barrios, F.López, L. Argerich, and R. Wachenchauzer, Variations of the similarity function of textrank for automated summarization., arXiv preprint arXiv:1602.03606, 2016.
[41] S. R.Manalu and A.M.Sundjaja, Review assessment support in Open Journal System using
TextRank., JPhCS, 801(1), 012074, 2017.