[1] M. Niknam, “Tehran: Organization of Records and National Library of the Islamic Republic of Iran, Research and Education Management Publications; 2006,” Combating fire, 2006.
[3] Gorbett, G.E., Meacham, B.J., Wood, C.B. et al. "Use of damage in fire investigation: a review of fire patterns analysis, research and future direction". Fire Sci Rev 4, 4 (2015). https://doi.org/10.1186/s40038-015-0008-4
[4] NFPA (2014) NFPA 921-"Guide for Fire and Explosion Investigations". National Fire Protection Association, Quincy (USA)
[5] C. R. Jennings, “Socioeconomic characteristics and their relationship to fire incidence: a review of the literature,” Fire Technol., vol. 35, no. 1, pp. 7–34, 1999, doi: 10.1023/A:1015330931387.
[6] T. Curt, T. Fréjaville, and S. Lahaye, “Modelling the spatial patterns of ignition causes and fire regime features in southern France: Implications for fire prevention policy,” Int. J. Wildl. Fire, vol. 25, no. 7, pp. 785–796, 2016, doi: 10.1071/WF15205.
[7] Y. Zhang, “Federal Emergency Management Agency (FEMA),” Encycl. Glob. Heal., 2012, doi: 10.4135/9781412963855.n451.
[8] P. Chhetri, J. Corcoran, R. J. Stimson, and R. Inbakaran, “Modelling potential socio-economic determinants of building fires in South East Queensland,” Geogr. Res., vol. 48, no. 1, pp. 75–85, 2010, doi: 10.1111/j.1745-5871.2009.00587.x.
[9] S. E. Chandler, A. Chapman, and S. J. Hollington, “Fire Incidence, Housing and Social Conditions - the Urban Situation in Britain.,” Fire Prev., no. 172, pp. 15–20, 1984.
[10] M. Duncanson, A. Woodward, and P. Reid, “Socioeconomic deprivation and fatal unintentional domestic fire incidents in New Zealand 1993-1998,” Fire Saf. J., vol. 37, no. 2, pp. 165–179, 2002, doi: 10.1016/S0379-7112(01)00033-9.
[11] J. Corcoran, G. Higgs, C. Brunsdon, and A. Ware, “The use of comaps to explore the spatial and temporal dynamics of fire incidents: A case study in South Wales, United Kingdom,” Prof. Geogr., vol. 59, no. 4, pp. 521–536, 2007, doi: 10.1111/j.1467-9272.2007.00639.x.
[12] J. Corcoran, G. Higgs, and A. Higginson, “Fire incidence in metropolitan areas: A comparative study of Brisbane (Australia) and Cardiff (United Kingdom),” Appl. Geogr., vol. 31, no. 1, pp. 65–75, 2011, doi: 10.1016/j.apgeog.2010.02.003.
[13] J. Corcoran, G. Higgs, C. Brunsdon, A. Ware, and P. Norman, “The use of spatial analytical techniques to explore patterns of fire incidence: A South Wales case study,” Comput. Environ. Urban Syst., vol. 31, no. 6, pp. 623–647, 2007, doi: 10.1016/j.compenvurbsys.2007.01.002.
[14] A. Balboa, A. Cuesta, J. González-Villa, G. Ortiz, and D. Alvear, “Logistic regression vs machine learning to predict evacuation decisions in fire alarm situations,” Saf. Sci., vol. 174, no. April 2023, 2024, doi: 10.1016/j.ssci.2024.106485.
[15] S. M. Lo, M. Liu, P. H. Zhang, and R. K. K. Yuen, “An artificial neural-network based predictive model for pre-evacuation human response in domestic building fire,” Fire Technol., vol. 45, no. 4, pp. 431–449, 2009, doi: 10.1007/s10694-008-0064-6.
[16] N. Qu, Z. Li, X. Li, S. Zhang, and T. Zheng, “Multi-parameter fire detection method based on feature depth extraction and stacking ensemble learning model,” Fire Saf. J., vol. 128, 2022, doi: 10.1016/j.firesaf.2022.103541.
[17] J. L. Hodges, B. Y. Lattimer, and K. D. Luxbacher, “Compartment fire predictions using transpose convolutional neural networks,” Fire Saf. J., vol. 108, p. 102854, 2019, doi: 10.1016/j.firesaf.2019.102854.
[18] Y. O. Sayad, H. Mousannif, and H. Al Moatassime, “Predictive modeling of wildfires: A new dataset and machine learning approach,” Fire Saf. J., vol. 104, pp. 130–146, 2019, doi: 10.1016/j.firesaf.2019.01.006.
[19] Y. Hong, J. Kang, and C. Fu, “Rapid prediction of mine tunnel fire smoke movement with machine learning and supercomputing techniques,” Fire Saf. J., vol. 127, 2022, doi: 10.1016/j.firesaf.2021.103492.
[20] J. Wang et al., “P-Flash – A machine learning-based model for flashover prediction using recovered temperature data,” Fire Saf. J., vol. 122, no. June 2020, p. 103341, 2021, doi: 10.1016/j.firesaf.2021.103341.
[21] J. Gubbi, S. Marusic, and M. Palaniswami, “Smoke detection in video using wavelets and support vector machines,” Fire Saf. J., vol. 44, no. 8, pp. 1110–1115, 2009, doi: 10.1016/j.firesaf.2009.08.003.
[22] L. Fan, W. C. Tam, Q. Tong, E. Y. Fu, and T. Liang, “An explainable machine learning based flashover prediction model using dimension-wise class activation map,” Fire Saf. J., vol. 140, 2023, doi: 10.1016/j.firesaf.2023.103849.
[23] “A Bayesian analysis of domestic fire response and fire injury”.
[24] C. Couto, Q. Tong, and T. Gernay, “Predicting the capacity of thin-walled beams at elevated temperature with machine learning,” Fire Saf. J., vol. 130, no. February, p. 103596, 2022, doi: 10.1016/j.firesaf.2022.103596.
[25] M. Z. Naser, “Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences,” Fire Technol., vol. 57, no. 6, pp. 2741–2784, 2021, doi: 10.1007/s10694-020-01069-8.
[26] Incidents statistics reports for the I. M. Fire & Safety service organization, “http://www.mahar.mashhad.ir.”