خوشه بندی کارآمد انرژی در شبکه‌های چند گامی حسگر بی‌سیم با استفاده از الگوریتم بهینه‌سازی ازدحام ذرات چندهدفه

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، دانشکده فنی و مهندسی، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران

10.22034/abmir.2025.22425.1077

چکیده

یکی از چالش‌های اصلی در شبکه‌های حسگر بی‌سیم (WSN)، طراحی روشی بهینه برای انتقال اطلاعات از گره‌های شبکه به ایستگاه پایه با مصرف انرژی کمتر است. به همین منظور در این مقاله یک روش خوشه‌بندی مبتنی بر بهینه‌سازی اجتماع ذرات چند هدفه (MOPSO) برای افزایش کارایی انرژی در این شبکه‌ها ارائه‌شده است. درروش پیشنهادی، از یک الگوریتم بهینه‌سازی ازدحام ذرات دودویی برای مکان‌یابی گره توزیع‌شده در شبکه‌های حسگر بی‌سیم استفاده‌شده و یک مدل مسیریابی چند قیدی با تبدیل محدودیت‌ها به تابع پنالتی، طراحی گردیده است. همچنین با الهام از ایده انتخاب طبیعی و جهش الگوریتم ژنتیک (GA)، تنوع ذرات در الگوریتم MOPSO افزایش داده‌شده است. نتایج شبیه‌سازی نشان می‌دهد که روش پیشنهادی در مقایسه با سایر روش‌ها، توانسته زمان محاسباتی را به‌اندازه 8/59 درصد کاهش دهد. همچنین، نرخ موفقیت مکان‌یابی، که به درصد گره‌هایی اشاره دارد که مکان آن‌ها به‌درستی تشخیص داده‌شده است، تا 54 درصد افزایش‌یافته است. بااین‌حال، میزان خطای مکان‌یابی، که نشان‌دهنده انحراف میان مکان تخمین‌زده‌شده و مکان واقعی گره‌ها است، به میزان 2/3 درصد بیشتر شده است. این بهبودها منجر به افزایش طول عمر شبکه و کارایی انرژی در شبکه‌های حسگر بی‌سیم، حتی با وجود افزایش جزئی در خطای مکان‌یابی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

An Energy Efficient Clustering in multi-hop WSN Using a Swarm Optimization Algorithm

نویسندگان [English]

  • Mohammad Mehdi Hosseini
  • Hamed Zargari
Assistant Professor, Department of Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
چکیده [English]

One of the major challenges in wireless sensor networks is how to transfer information from nodes within the network to the base station and choose the best possible route to transmit this information. Choosing the best route can be affected based on various factors such as energy consumption, response speed and latency, data transfer accuracy, and so on. Our goal is to choose the best route in terms of energy consumption. in this paper, an optimal method using tools such as multi-objective particle swarm optimization algorithm, environment segmentation, and node location search is presented to increase energy efficiency. In the proposed method, a binary particle swarm optimization algorithm is used to locate the nodes distributed in the wireless sensor networks and uses the positioning error and computation time during the simulations as a performance criterion. In the proposed method to meet the different needs of the users regarding the QoS network, a multi-constrained QoS routing model is launched and the fit function is constructed by converting the QoS constraints to the penalty function. We also introduced the ideas of natural selection and GA mutation for PSO to improve the performance of the PSO algorithm, which led to a greater variety of particles. The results show that the proposed method can solve the CAB examples very effectively and efficiently and provide better computational results than the PSO. The simulation results showed that in the proposed method the computational time required for locating decreased by 59.8% and the locating error increased by 3.2%. By reducing the computational time for locating, the energy saving and lifetime of the wireless sensor network could be increased. It should be noted, however, that the success rate of the algorithm also increased by about 36% to 54% in algorithms with similar structures.

کلیدواژه‌ها [English]

  • Clustering
  • Data Integration
  • Localization
  • Particle Swarm Optimization
  • Wireless Sensor Networks
[1]      S. Maqbool, N. Chandra, S. Dagadi, "ERPWS: An Energy Efficient Routing Protocol for Conductive Sensor based Water Level Monitoring and Control System using Zigbee and 74HC14 Inverter," International Journal of Modern Education and Computer Science, vol. 5, no. 6, pp. 38–45, June 2013. 
[2]      A. A. Abbasi, M. Younis, "A Survey on Clustering Algorithms for Wireless Sensor Networks," Computer Communications, vol. 30, no. 14–15, pp. 2826–2841, Oct. 2007. 
[3]      R. M. Zuhairy, M. G. H. Al Zamil, "Energy-efficient load balancing in wireless sensor network: An application of multinomial regression analysis," International Journal of Distributed Sensor Networks, vol. 14, no. 3, pp. 1–11, Mar. 2018. 
[4]      S. Ying, P. B. Kantor, E. L. Morse, "Using cross-evaluation to evaluate interactive QA systems," Journal of the Association for Information Science and Technology, vol. 62, no. 9, pp. 1653–1665, Sept. 2011. 
[5]      S. Rani, S. H. Ahmed, "Multi-hop Energy Efficient Routing," in Multi-hop Routing in Wireless Sensor Networks, Springer, pp. 978–981, 2016. 
[6]      Q. Ding, R. Zhu, H. Liu, M. Ma, "An overview of machine learning-based energy-efficient routing algorithms in wireless sensor networks," Electronics, vol. 10, no. 13, p. 1539, July 2021. 
[7]      S. Loganathan, J. Arumugam, "Energy efficient clustering algorithm based on particle swarm optimization technique for wireless sensor networks," Wireless Personal Communications, vol. 119, no. 1, pp. 815–843, Jan. 2021. 
[8]      M. K. Roberts, P. Ramasamy, "Optimized hybrid routing protocol for energy-aware cluster head selection in wireless sensor networks," Digital Signal Processing, vol. 130, p. 103737, Jan. 2022. 
[9]      O. Singh, V. Rishiwal, R. Chaudhry, M. Yadav, "Multi-objective optimization in WSN: Opportunities and challenges," Wireless Personal Communications, vol. 121, no. 1, pp. 127–152, Jan. 2021. 
[10]      V. Anand, S. Pandey, "New approach of GA–PSO‐based clustering and routing in wireless sensor networks," International Journal of Communication Systems, vol. 33, no. 16, p. e4571, Nov. 2020. 
[11]      H. Hu, X. Fan, C. Wang, "Energy efficient clustering and routing protocol based on quantum particle swarm optimization and fuzzy logic for wireless sensor networks," Scientific Reports, vol. 14, no. 1, p. 18595, Jan. 2024.
[12]      S. Roy, N. Mazumdar, R. Pamula, "An energy optimized and QoS concerned data gathering protocol for wireless sensor network using variable dimensional PSO," Ad Hoc Networks, vol. 123, p. 102669, May 2021.
[13]      L. Tang, Z. Lu, B. Fan, "Energy efficient and reliable routing algorithm for wireless sensors networks," Applied Sciences, vol. 10, no. 5, p. 1885, Mar. 2020.
[14]      F. Pasandideh, F. Rodriguez Cesen, P. Henrique Morgan Pereira, C. Esteve Rothenberg, E. Pignaton de Freitas, "An improved particle swarm optimization algorithm for UAV base station placement," Wireless Personal Communications, vol. 130, no. 2, pp. 1343–1370, Feb. 2023. 
[15]      S. Rani, H. Babbar, P. Kaur, M. D. Alshehri, S. H. Shah, "An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2548–2555, Feb. 2022. 
[16]      H. Obeidat, W. Shuaieb, O. Obeidat, R. Abd-Alhameed, "A review of indoor localization techniques and wireless technologies," Wireless Personal Communications, vol. 119, pp. 289–327, Jan. 2021.
[17]      Q. Yang, "A new localization method based on improved particle swarm optimization for wireless sensor networks," IET Software, vol. 16, no. 3, pp. 251–258, May. 2022.
[18]      E. Tagne Fute, D. K. Nyabeye Pangop, and E. Tonye, "A new hybrid localization approach in wireless sensor networks based on particle swarm optimization and tabu search," Applied Intelligence, vol. 53, no. 7, pp. 7546–7561, 2023.
[19]      M. Alrizq, S. Stalin, S. Alyami, V. Roy, A. Mishra, A. K. Chandanan, N. A. Awad, and P. Venkatesh, "Optimization of sensor node location utilizing artificial intelligence for mobile wireless sensor network," Wireless Networks, pp. 1–13, 2023.
[20]      H. AL-Husseini, M. M. Hosseini, A. Yousofi, and M. A. Alazzawi, “Whale Optimization Algorithm-Enhanced Long Short-Term Memory Classifier with Novel Wrapped Feature Selection for Intrusion Detection,” Journal of Sensor and Actuator Networks, vol. 13, no. 6, p. 73, 2024.
[21]      I. Daanoune, B. Abdennaceur, and A. Ballouk, "A comprehensive survey on LEACH-based clustering routing protocols in Wireless Sensor Networks," Ad Hoc Networks, vol. 114, p. 102409, 2021.
[22]      Y. He, X. Cheng, W. Peng, and G. L. Stuber, "A survey of energy harvesting communications: Models and offline optimal policies," IEEE Communications Magazine, vol. 53, no. 6, pp. 79–85, June 2015.
[23]      P. C. S. Rao, P. K. Jana, and H. Banka, "A particle swarm optimization-based energy efficient cluster head selection algorithm for wireless sensor networks," Wireless Networks, Springer, doi: 10.1007/s11276-016-1270-7, 2016.