[1] S. T. Mehedi, A. Anwar, Z. Rahman, and K. Ahmed, “Deep transfer learning based intrusion detection system for electric vehicular networks,” Sensors, vol. 21, no. 14, pp. 1–23, 2021, doi: 10.3390/s21144736.
[2] Ramezanzadeh, M. Barzegar, and H. Motameni, “Automatic Security Assessment of Petri Nets-Based Threat Routes,” Electronic and Cyber Defense, vol. 9, no. 4, pp. 87–98, 2022. [In Persian].
[3] L. Yang, A. Moubayed, I. Hamieh, and A. Shami, “Tree-based intelligent intrusion detection system in internet of vehicles,” 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 - Proc., no. October, 2019, doi: 10.1109/GLOBECOM38437.2019.9013892.
[4] L. Yang, A. Moubayed, and A. Shami, “MTH-IDS: A Multitiered Hybrid Intrusion Detection System for Internet of Vehicles,” IEEE Internet Things J., vol. 9, no. 1, pp. 616–632, 2022, doi: 10.1109/JIOT.2021.3084796.
[5] Rosay, F. Carlier, and P. Leroux, “Feed-forward neural network for Network Intrusion Detection,” IEEE Veh. Technol. Conf., vol. 2020-May, 2020, doi: 10.1109/VTC2020-Spring48590.2020.9129472.
[6] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion detection using deep convolutional neural network,” Veh. Commun., vol. 21, p. 100198, 2020, doi: 10.1016/j.vehcom.2019.100198.
[7] L. Yang, D. M. Manias, and A. Shami, “PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams,” 2021 IEEE Glob. Commun. Conf. GLOBECOM 2021 - Proc., no. September, 2021, doi: 10.1109/GLOBECOM46510.2021.9685338.
[8] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based Intrusion Detection System for In-Vehicle Network,” 2018 16th Annu. Conf. Privacy, Secur. Trust. PST 2018, pp. 0–5, 2018, doi: 10.1109/PST.2018.8514157.
[9] Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic characterization,” ICISSP 2018 - Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018-Janua, no. Cic, pp. 108–116, 2018, doi: 10.5220/0006639801080116.
[10] F. Aloraini, A. Javed, and O. Rana, "Adversarial attacks on intrusion detection systems in in-vehicle networks of connected and autonomous vehicles," Sensors, vol. 24, no. 12, p. 3848, 2024. doi: 10.3390/s24123848.
[11] S. Firasta, Y. R. Srivastava and V. Rao, "Cognitive Detection of Anomalies in Autonomous In-Vehicle Network Communication," 2024 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI), KANNUR, India, 2024, pp. 1-6, doi: 10.1109/APCI61480.2024.10617212.
[12] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi, “LSTM-based intrusion detection system for in-vehicle can bus communications,” IEEE Access, vol. 8, pp. 185489–185502, 2020, doi: 10.1109/ACCESS.2020.3029307.
[13] Y. Zhu et al., “Converting tabular data into images for deep learning with convolutional neural networks,” Sci. Rep., vol. 11, no. 1, pp. 1–12, 2021 doi: 10.1038/s41598-021-90923-y.
[14] Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. Gagnon, and F. Massicotte, “DIDroid: Android malware classification and characterization using deep image learning,” ACM Int. Conf. Proceeding Ser., pp. 70–82, 2020, doi: 10.1145/3442520.3442522.
[15] T. H. De Huang and H. Y. Kao, “R2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections,” in Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, Jan. 2019, pp. 2633–2642, doi: 10.1109/BigData.2018.8622324.
[16] Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886, 2013, doi: 10.1109/TPAMI.2012.230.
[17] Q. Sun and B. Pfahringer, “Bagging ensemble selection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7106 LNAI, pp. 251–260, 2011, doi: 10.1007/978-3-642-25832-9_26.
[18] Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, “Boosting methods for multi-class imbalanced data classification: an experimental review,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00349-y.
[19] R. E. Schapire, "The boosting approach to machine learning: an overview," in Nonlinear Estimation and Classification, D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu, Eds. New York, NY: Springer, 2003, vol. 171, pp. 1-14. doi: 10.1007/978-0-387-21579-2_9.
[20] Moubayed, A. Shami, P. Heidari, A. Larabi, and R. Brunner, “Edge-Enabled V2X Service Placement for Intelligent Transportation Systems,” IEEE Trans. Mob. Comput., vol. 20, no. 4, pp. 1380–1392, 2021, doi: 10.1109/TMC.2020.2965929.