تنبیه: عملگری جدید برای کنترل فشار انتخاب و بهبود کارایی الگوریتم کپک مخاطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم کامپیوتر، دانشکده علوم ریاضی، دانشگاه یزد، یزد، ایران

2 دانشیار گروه علوم کامپیوتر، دانشکده علوم ریاضی، دانشگاه یزد، یزد، ایران

3 استادیار گروه علوم کامپیوتر، دانشکده علوم ریاضی، دانشگاه یزد، یزد، ایران

10.22034/abmir.2025.22831.1104

چکیده

در این مقاله، الگوریتم کپک مخاطی (SMA) که از رفتار بیولوژیکی کپک‌های مخاطی الهام گرفته‌شده است، به‌عنوان روشی فراابتکاری قدرتمند برای حل مسائل پیچیده بهینه‌سازی بررسی و ارزیابی‌شده است. یکی از چالش‌های اصلی این الگوریتم، همگرایی زودرس ناشی از عدم کنترل فشار انتخاب است. به‌منظور رفع این مشکل، عملگر تنبیه ارائه‌شده است تا فشار انتخاب را کنترل کند وتنوع جمعیت را حفظ کند. این عملگر برخلاف روش‌های دیگر که فشار انتخاب را حین فرآیند محاسباتی الگوریتم کنترل نمی‌کنند، به‌صورت پویا رفتار خود را براساس شرایط فعلی الگوریتم تنظیم می‌کند. تا در مواقعی که ذرات دچار همگرایی زودرس می‌شوند، یک نیروی دافعه به آن‌ها اعمال می‌کند که از بهینه‌محلی رهایی یابند و کاوش بهتری در فضای جستجو انجام دهند. آزمایش‌های گسترده‌ای بر روی 23 تابع آزمایشی CEC2017، که شامل توابع مختلفی از قبیل تک‌حالته، چندحالته، ترکیبی و پیچیده است، انجام‌شده تا عملکرد عملگر پیشنهادی در شرایط پیچیده و متنوع ارزیابی شود. نتایج حاصل نشان می‌دهد که SMA ی بهبودیافته توانسته است در مقایسه با نسخه اصلی روی توابع تست استاندارد کارایی الگوریتم را 5/۳۵٪ بهبود دهد. نتایج شبیه‌سازی و آزمایش‌ها در این پژوهش نشان‌دهنده کارایی عملگر پیشنهادی در کنترل فشار انتخاب و درنتیجه کارایی بهتر الگوریتم کپک مخاطی بهبودیافته در حل مسائل بهینه‌سازی پیچیده است و می‌تواند در زمینه‌های گسترده‌ای از علوم و مهندسی به‌طور مؤثر و کارآمد استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Punishment: A new operator to control selection pressure and improve the efficiency of the slime mold algorithm

نویسندگان [English]

  • Arezoo Rahimi 1
  • Mohammad Farshi 2
  • Sepehr Ebrahimi Mood 3
1 MSc.Student, Department of Computer Science, Yazd University, Yazd, Iran
2 Associate Professor, Department of Computer Science, Yazd University, Yazd, Iran
3 Assistant Professor, Department of Computer Science, Yazd University, Yazd, Iran
چکیده [English]

In this paper, the Slime Mould Algorithm (SMA), inspired by the biological behavior of slime moulds, is examined and evaluated as a powerful metaheuristic method for solving complex optimization problems. One of the main challenges of this algorithm is premature convergence caused by the lack of control over selection pressure. To address this issue, a penalizing operator is proposed to regulate selection pressure and maintain population diversity. Unlike other methods that do not manage selection pressure during the computational process of the algorithm and make decisions regardless of the algorithm's current state, the proposed operator dynamically adjusts its behavior based on the algorithm's current conditions. When particles experience premature convergence, a repulsive force is applied to help them escape local optima and achieve better exploration of the search space. Extensive experiments were conducted on 23 benchmark functions from the CEC2017 suite, including various types such as unimodal, multimodal, hybrid, and complex functions, in order to evaluate the performance of the proposed operator under diverse and challenging conditions. The results show that the improved SMA achieved a 35.5% performance enhancement compared to the original version on standard test functions. The simulation results and experimental findings in this study demonstrate the effectiveness of the proposed operator in controlling selection pressure, leading to improved performance of the enhanced Slime Mould Algorithm in solving complex optimization problems. This makes it a practical and efficient solution for a wide range of applications in science and engineering.

کلیدواژه‌ها [English]

  • Slime mould algorithm
  • Selection pressure
  • Punishment operator
  • Optimization
[1]     G. Beni and J. Wang, "Swarm intelligence in cellular robotic systems, " in Robots and Biological Systems: Towards a New Bionics, H. Bolles and C. Giralt, Eds. Berlin, Germany: Springer, 1993, pp. 703–712.
[2]     F. S. Gharehchopogh, et al., "Slime mould algorithm: A comprehensive survey of its variants and applications," Arch. Comput. Methods Eng., vol. 30, no. 4, pp. 2683-2723, Jan 2023.
[3]     H. Nezamabadi-pour, Genetic Algorithm: Basic Concepts and Advanced Topics. Kerman, Iran: Shahid Bahonar University of Kerman, 2010.
[4]     T. T. Hills, et al., "Exploration versus exploitation in space, mind, and society," Trends Cogn. Sci., vol. 19, no. 1, pp. 46-54, Jan. 2015.
 
[5]     M. Črepinšek, S.-H. Liu, M. Mernik, "Exploration and exploitation in evolutionary algorithms: A survey," ACM Comput. Surv., vol. 45, no. 3, pp. 1-33, Sep. 2013.
[6]     S. Li, et al., "Slime mould algorithm: A new method for stochastic optimization," Future Gener. Comput. Syst., vol. 111, pp. 300-323, Nov. 2020.
[7]     D. Dhawale, V. K. Kamboj, P. Anand, "An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm," Eng. Comput., 2022.
[8]     Y. Liu, et al., "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, vol. 234, article 121164, Jul. 2021.
[9]     H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, 1977.
[10] D. Quagliarella, et al., Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, John Wiley & Sons, 1997.
[11] S. Desale, et al., "Heuristic and meta-heuristic algorithms and their relevance to the real world: a survey," Int. J. Comput. Eng. Res. Trends, vol. 351, no. 5, pp. 2349-7084, 2015.
[12] S. Bastami and M. Doulattshahi, "Compact neural architecture search for image classification using gravitational search algorithm," J. Theor. Appl. Mach. Intell., vol. 2, no. 1, pp. 77–91, 2025.
[13] M. Mohammadi, et al., "Security-aware resource allocation in fog computing using a meta-heuristic algorithm," Cluster Comput., vol. 28, no. 2, article 104, 2025.
[14] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, "GSA: a gravitational search algorithm," Inf. Sci., vol. 179, no. 13, pp. 2232-2248, Jul. 2009.
[15] S. Mirjalili, "SCA: a sine cosine algorithm for solving optimization problems," Knowl.-Based Syst., vol. 96, pp. 120-133, Nov. 2016.
[16] R. V. Rao, V. J. Savsani, D. Vakharia, "Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems," Inf. Sci., vol. 183, no. 1, pp. 1-15, Jan. 2012.
[17] L. B. Booker, D. E. Goldberg, J. H. Holland, "Classifier systems and genetic algorithms," Artif. Intell., vol. 40, no. 1-3, pp. 235-282, 1989.
[18] R. Storn, K. Price, "Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces," J. Glob. Optim., vol. 11, pp. 341-359, 1997.
[19] J. Kennedy, R. Eberhart, "Particle swarm optimization," in Proc. ICNN'95 - Int. Conf. Neural Networks, IEEE, 1995, pp. 1942-1948.
[20] L. Lin, M. Gen, "Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation," Soft Comput., vol. 13, pp. 157-168, 2009.
[21] D. Gürses, et al., "Comparison of the arithmetic optimization algorithm, the slime mold optimization algorithm, the marine predators algorithm, the salp swarm algorithm for real-world engineering applications," Mater. Test., vol. 63, no. 5, pp. 448-452, 2021.
[22] A.-D. Tang, et al., "A modified slime mould algorithm for global optimization," Comput. Intell. Neurosci., vol. 2021, article 2298215, 2021.
[23] Bala Krishna, S. Saxena, V. K. Kamboj, "hSMA-PS: a novel memetic approach for numerical and engineering design challenges," Eng. Comput., vol. 38, no. 4, pp. 3513-3547, 2022.
[24] D. Yousri, et al., "A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm," Energy Convers. Manag., vol. 243, article 114269, 2021.
[25] M. K. Naik, R. Panda, A. Abraham, "Adaptive opposition slime mould algorithm," Soft Comput., vol. 25, no. 22, pp. 14297-14313, 2021.
[26] E. H. Houssein, et al., "Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems," Expert Syst. Appl., vol. 174, article 114689, 2021.
[27] S. R. Biswal, et al., "Optimal allocation/sizing of DGs/capacitors in reconfigured radial distribution system using quasi-reflected slime mould algorithm," IEEE Access, vol. 9, pp. 125658-125677, 2021.
[28] A. Ewees, et al., "Improved Slime Mould Algorithm based on Firefly Algorithm for feature selection: A case study on QSAR model," Eng. Comput., 2021.Slowik, H. Kwasnicka, "Evolutionary algorithms and their applications to engineering problems," Neural Comput. Appl., vol. 32, pp. 12363-12379, 2020.
[29] M. Becker, "On the efficiency of nature-inspired algorithms for generation of fault-tolerant graphs," in 2015 IEEE Int. Conf. Syst., Man, Cybern., IEEE, 2015, pp. 1059-1064.
[30] D. Kessler, "Plasmodial structure and motility," in Cell Biology of Physarum and Didymium, vol. 1, pp. 145–208, 1982.
[31] V. Šešum-Čavić, E. Kühn, D. Kanev, "Bio-inspired search algorithms for unstructured P2P overlay networks," Swarm Evol. Comput., vol. 29, pp. 73-93, 2016.
[32] T. Latty, M. Beekman, "Speed–accuracy trade-offs during foraging decisions in the acellular slime mould Physarum polycephalum," Proc. R. Soc. B, vol. 278, no. 1705, pp. 539-545, 2011.
[33] Faramarzi, et al., "Equilibrium optimizer: A novel optimization algorithm," Knowl.-Based Syst., vol. 191, article 105190, 2020.
[34] S. Mirjalili, S. M. Mirjalili, A. Lewis, "Grey wolf optimizer," Adv. Eng. Softw., vol. 69, pp. 46-61, 2014.
[35] A. Heidari, et al., "Harris hawks optimization: Algorithm and applications," Future Gener. Comput. Syst., vol. 97, pp. 849-872, 2019.
 
[36] Z. Duan, X. Qian, W. Song, "Multi-Strategy Enhanced Slime Mould Algorithm for Optimization Problems," IEEE Access, 2025.
[37] T.-L. Wang, et al., "CSSMA: A novel algorithm of slime mold optimizer for global optimization problems," 2023.
[38] G. Wu, R. Mallipeddi, P. N. Suganthan, "Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization," Technical Report, 2017.
[39] J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.