[1] D. G. Manuel, M. Leung, K. Nguyen, P. Tanuseputro and H. Johansen, “Burden of cardiovascular disease in Canada,” Canadian Journal of Cardiology, Vol. 19, No. 9, pp. 997-1004, 2003.
[2] S. Setayesh and M. A. Tabrazed, “Predicting Heart Attack by Detecting Abnormalities in ECG Data Using Deep Self-Encoding Network”, National Conference on Artificial Intelligence and Software Engineering, 1402, pp. 1-6.
[3] F. Z. Mehrjardi, A. M. Latif, M. S. Zarchi, and R. Sheikhpour, “A survey on deep learning-based image forgery detection,” Pattern Recognition, vol. 144, 2024, doi: 10.1016/j.patcog.2023.109778.
[4] F. Z. Mehrjardi, A. M. Latif, and M. S. Zarchi, "Copy-move forgery detection and localization using deep learning," International Journal of Pattern Recognition and Artificial Intelligence, Vol. 37, No. 9, 2023, doi: 10.1142/S0218001423520122.
[5] B. Wang, X. Lyu, J. Qu, H. Sun, Z. Pan and Z. Tang, “GNDD: A graph neural network-based method for drug-disease association prediction,” In IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1253-1255, IEEE, 2019, doi: 10.1109/BIBM47256.2019.8983257.
[6] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan and M. Adam, “Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals,” Information sciences, Vol. 415, pp. 190-198, 2017, doi: 10.1016/j.ins.2017.06.027.
[7] M. Vijayagopal, S. Muralidhara, N. Kashyap and P. Mendiratta, “Arrhythmia prediction and diagnosis using data analysis,” NC State University, Raleigh, 2020.
[8] F. Murat, O. Yildirim, M. Talo, Y. Demir, R. S. Tan, E. J. Ciaccio, and U. R. Acharya, “Exploring deep features and ECG attributes to detect cardiac rhythm classes,” Knowledge-Based Systems, Vol. 232, 2021, doi: 10.1016/j.knosys.2021.107473.
[9] H. V. Denysyuk, R. J. Pinto, P. M. Silva, R. P. Duarte, F. A. Marinho, L. Pimenta and I.M. Pires, “Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review,” Vol. 9, No. 2, 2023, 10.1016/j.heliyon.2023.e13601.
[10] S. Sahoo, M. Dash, S. Behera and S. Sabut, “Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey,” Vol. 41, No. 4, pp.185-194, 2020, doi: 10.1016/j.irbm.2019.12.001.
[11] C. Li, H. Zhao, W. Lu, X. Leng, L. Wang, X. Lin, and J. Xiang, “DeepECG: Image-based electrocardiogram interpretation with deep convolutional neural networks,” Biomedical Signal Processing and Control, Vol. 69, 2021, doi: 10.1016/j.bspc.2021.102824.
[12] S. Sattar, R. Mumtaz, M. Qadir, S. Mumtaz, M. A. Khan, T. De Waele and A. Shahid, “Cardiac Arrhythmia Classification Using Advanced Deep Learning Techniques on Digitized ECG Datasets,” Sensors, Vol. 24, No. 8, 2024, doi: 10.3390/s24082484
[13] M. A. Raza, M. Anwar, K. Nisar, A. A. A. Ibrahim, U. A. Raza, S. A. Khan, F. Ahmad “Classification of electrocardiogram signals for arrhythmia detection using convolutional neural network,” Computers, Materials and Continua,Vol.77, No. 3, pp. 3817-3834, 2023.
[14] Z. F. M. Apandi, R. Ikeura and S. Hayakawa, “Arrhythmia detection using MIT-BIH dataset: A review,” In International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), pp. 1-5, 2018, doi: 10.1109/ICASSDA.2018.8477620.
[15] J. Z. Ahmadabadi, F. Z. Mehrjardi, M. Ghanbary and M. Mirzaei, “Identification of Effective Factors and Prediction of Ischemic Heart Disease Using Machine Learning Methods and Data from the Yazd Health Study (YaHS),” Journal of Shahid Sadoughi University of Medical Sciences, Vol. 32, No. 7, pp. 67-79, 2024, doi: 10.18502/ssu.v32i7.16571.
[16] F. Rustam, M. Khalid, W. Aslam, V. Rupapara, A. Mehmood and G.S. Choi, “A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis,” Plos one, Vol. 16, No. 2, 2021, doi: 10.1371/journal.pone.0245909.
[17] S. Ray, “A quick review of machine learning algorithms,” In International conference on machine learning, big data, cloud and parallel computing (COMITCon), pp. 35-39, 2019, doi: 10.1109/COMITCon.2019.8862451.
[18] H, Jafarzadeh, M. Mahdianpari, E. Gill, F. Mohammadimanesh and S. Homayouni, “Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: a comparative evaluation,” Remote Sensing, Vol. 13, No. 21, 2021, doi: 10.3390/rs13214405.
[19] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science and Research (IJSR), Vol. 9, No. 1, pp. 381-386, 2020, doi: 10.21275/ART20203995.
[20] S. M. Matinkhah, A. khakbaz, F. Adibnia, “Application of 'long-term-short-term memory' and 'convolutional neural networks' to detect distributed denial of service attacks,” Applied and Basic Machine Intelligence Research, Vol. 2, No. 1, 2024, doi: 10.22034/ABMIR.2023.19764.1025.
[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, Vol. 30, 2017.
[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016, doi: 10.48550/arXiv.1609.02907.
[23] D. Oniani, C. Wang, Y. Zhao, A. Wen, H. Liu and F. Shen, “Comparisons of graph neural networks on cancer classification leveraging a joint of phenotypic and genetic features,” arXiv preprint arXiv:2101.05866, 2021.
[24] M. Chourasia, A. Thakur, S. Gupta and A. Singh, “ECG heartbeat classification using CNN,” In IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1-6, IEEE, 2020, doi: 10.1109/UPCON50219.2020.9376451
[25] A. A. Ahmed, W. Ali, T. A. Abdullah and S. J. Malebary, “Classifying cardiac arrhythmia from ECG signal using 1D CNN deep learning model,” Mathematics, Vol. 11, No. 3, pp. 1-16, 2023, doi: 10.3390/math11030562.
[26] C. G. Igiri, V. I. E. Anireh, N. D. Nwiabu, and D. Matthias, "Comparative analysis of supervised machine learning algorithms for ECG arrhythmia detection using small dataset," International Journal of Computer Science and Mathematical Theory (IJCSMT), vol. 9, no. 4, pp. 23–44, 2023.
[27] N. Pant, P. Singh, and R. Bera, "ECG-GraphNet: A graph neural network approach for electrocardiogram-based arrhythmia classification," Biomedical Signal Processing and Control, vol. 87, 105442, 2024.
[28] M. S. Al Rahhal, Y. Bazi and H. AlHichri, "Deep learning approach for active classification of electrocardiogram signals," Journal of Medical Systems, vol. 44, no. 4, pp. 1–11, 2020.
[29] H. Shi, H. Xu and M. Zhou,"Transformer-based anomaly detection for ECG signals," Algorithms, vol. 16, no. 4, 185, MDPI, 2023.