یک روش استقرار سرویس و تخصیص منابع مبتنی بر الگوریتم جستجوی عروس‌های دریایی ارتقا داده شده برای محیط‌های پردازش لبه همراه چهار لایه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه کامپیوتر، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران

2 استادیار، گروه کامپیوتر، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران

چکیده

محاسبات لبه همراه (MEC) به‌عنوان رویکردی جدید در شبکه‌ها، منابع را برای ارائه خدمات باکیفیت در چندین لایه سازمان‌دهی می‌کند. از چالش‌های اساسی در این شبکه‌ها، می‌توان به انتخاب بهینه‌ترین منبع برای سرویس‌های درخواستی کاربران اشاره کرد که با نام استقرار سرویس یا به اختصار SPP شناخته می‌شود. در SPP با در نظر گرفتن محدودیت‌های مختلف QoS، برای هر درخواست کاربران بهینه‌ترین منبع از لایه‌های لبه، مه و ابر انتخاب می‌شود. یک الگوریتم تخصیص بهینه منابع می‌تواند به صورت چشمگیری رضایت کاربران و فراهم‌کنندگان خدمات را افزایش داده و با بهینه کردن ارتباطات و کاهش زمان سرویس‌دهی باعث افزایش بهره‌وری کل سیستم شود. ازاین‌رو، در این مقاله یک چهارچوب جدید با نام EMLJSA برای استقرار سرویس‌ها و تخصیص منابع در شبکه‌های چند لایه‌ای MEC فراهم شده است. در EMLJSA یک نسخه بهبود داده شده از الگوریتم فرا ابتکاری جستجوی عروس‌های دریایی بکار گرفته شده که در آن معادلات پایه این الگوریتم اصلاح شده‌اند. همچنین، یک نسخه از عملگر جهش و یک مکانیزم جستجوی همسایگی آشوبناک برای افزایش بهره‌وری و قابلیت‌های جستجو معرفی گردیده است. برای ارزیابی کارایی الگوریتم پیشنهادی دوازده شبکه MEC چهار لایه‌ای طراحی شده است. نتایج آزمایش‌ها به صورت عددی و گرافیکی با هفت روش مشابه مقایسه شده‌اند، که اثربخشی و برتری روش پیشنهادی را نشان می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Service Placement and Resource Allocation Method based on an Enhanced Jellyfish Search Algorithm for Four-layer Mobile Edge Computing Environ

نویسندگان [English]

  • Mohammadreza Haghighat Afshar 1
  • Kambiz Majidzadeh 2
  • Mohammad Masdari 2
  • Faramarz Fathnezhad 2
1 PhD Student, Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2 Assistant Professor, Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
چکیده [English]

Mobile edge computing (MEC) is a new networking paradigm that organizes resources in multiple layers to provide high quality services. The resources and services provided in each layer are different regarding the quality, speed, and power. Selecting the most optimal resource among the many resources provided in the edge, fog, and cloud layers for the services requested by the network users under various Quality-of-Service (QoS) restrictions is one of the essential challenges in these networks, which is named Service Placement Problem (SPP). An optimal resource placement algorithm can significantly increase the satisfaction of users and service providers and enhance the overall productivity of the entire system by optimizing communications and reducing service times. Consequently, a new framework called EMLJSA is provided in this paper to solve service placement and resource allocation in four-layer MEC environments. In the EMLJSA, an improved version of Jellyfish Search algorithm (JS) is introduced, in which the basic equations are rectified. Also, a variant of the mutation operator and a chaotic neighborhood search mechanism have been utilized in order to enhance exploration, exploitation, and local departure capabilities. In the next step, twelve four-layer MEC networks are designed to evaluate the effectiveness of the contributions and the proposed algorithm. Finally, the results of the proposed algorithm are compared with seven state-of-the-art methods numerically and visually. The experimental results demonstrate the effectiveness of the innovations and the superiority of the proposed method over the existing methods.

کلیدواژه‌ها [English]

  • Mobile Edge Computing
  • Fog and Cloud Computing
  • Service Placement
  • Resource Allocation
  • Optimization
[1]     M. Khojand, K. Majidzadeh, M. Masdari, and Y. Farhang, "Controller placement in SDN using game theory and a discrete hybrid metaheuristic algorithm," The Journal of Supercomputing, vol. 80, no. 5, pp. 6552-6600, 2024.
[2]     M. H. Shirvani and M. Masdari, "A survey study on trust-based security in Internet of Things: Challenges and issues," Internet of Things, vol. 21, p. 100640, 2023.
[3]     M. Abedini Bagha, K. Majidzadeh, M. Masdari, and Y. Farhang, "Improving delay in SDNs by metaheuristic controller placement," International Journal of Industrial Electronics Control and Optimization, vol. 5, no. 4, pp. 286-296, 2022.
[4]     M. A. Bagha, K. Majidzadeh, M. Masdari, and Y. Farhang, "ELA-RCP: An energy-efficient and load balanced algorithm for reliable controller placement in software-defined networks," Journal of Network and Computer Applications, vol. 225, p. 103855, 2024.
[5]     K. Moghaddasi and M. Masdari, "Blockchain-driven optimization of IoT in mobile edge computing environment with deep reinforcement learning and multi-criteria decision-making techniques," Cluster Computing, pp. 1-29, 2023.
[6]     M. Hosseinzadeh et al., "Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments," Journal of Grid Computing, vol. 19, pp. 1-27, 2021.
[7]     M. Masdari and H. Khezri, "Efficient offloading schemes using Markovian models: a literature review," Computing, vol. 102, no. 7, pp. 1673-1716, 2020.
[8]     S. Li, J. Du, D. Zhai, X. Chu, and F. R. Yu, "Task offloading, load balancing, and resource allocation in MEC networks," IET Communications, vol. 14, no. 9, pp. 1451-1458, 2020.
[9]     J. Yang, A. A. Shah, and D. Pezaros, "A Survey of Energy Optimization Approaches for Computational Task Offloading and Resource Allocation in MEC Networks," Electronics, vol. 12, no. 17, p. 3548, 2023.
[10] S. H. S. Ebrahimi, K. Majidzadeh, and F. S. Gharehchopogh, "A principal label space transformation and ridge regression-based hybrid gorilla troops optimization and jellyfish search algorithm for multi-label classification," Cluster Computing, pp. 1-45, 2024.
[11] S. Barshandeh, F. Soleimanian Gharehchopogh, B. Abdolahzadeh, S. Gholizadeh, and S. Rasooli Sangani, "A Chaotic-integrated Harris Hawks Optimization Algorithm for Solving Numerical Optimization Problems, "The second conference of electricity, mechanics, aerospace, computer and engineering sciences", Sydney, Australlia, 2023.
[12] M. Masdari, K. Majidzadeh, E. Doustsadigh, A. Babazadeh, and R. Asemi, "Energy-aware computation offloading in mobile edge computing using quantum-based arithmetic optimization algorithm," 2022.
[13] R. Ghabousian, Y. Farhang, K. Majidzadeh, and A. Babazadeh Sangar, "Hybrid of particle swarm optimization algorithm and fuzzy system for diabetes diagnosis," International Journal of Nonlinear Analysis and Applications, vol. 15, no. 2, pp. 39-46, 2024.
[14] S. Barshandeh, S. Gholizadeh, S. koulaeizadeh, P. Eskandarian, S. Garah Pasha, and A. Ghaffarpour Rahbar, "MPCASMA: A Multi-Population Chaotic-based Hybrid Algorithm for Global Optimization and Its Application in Feature Selection," The 7th International Conference on Applied Research in Science and Engineering", Aachen, Germany, 2023.
[15] F. Jafarnejad Rezaiyeh and K. Majidzadeh, "NMFA: Novel Modified FA algorithm Based On Firefly Recent Behaviors," Journal of Advances in Computer Research, vol. 10, no. 4, pp. 51-74, 2019.
[16] R. Sabzalizadeh, S. Barshandeh, and S. Gholizadeh, "An Invasive Weed Optimization-based Energy and Resource-efficient Workflow Scheduling Algorithm for the Cloud Environment," The 20th International Conference on Information Technology, Computers and Telecommunications", Span, 2023.
[17] M. Salimian, M. Ghobaei‐Arani, and A. Shahidinejad, "Toward an autonomic approach for Internet of Things service placement using gray wolf optimization in the fog computing environment," Software: Practice and Experience, vol. 51, no. 8, pp. 1745-1772, 2021.
[18] S. Nethaji and M. Chidambaram, "Differential Grey Wolf Load-Balanced Stochastic Bellman Deep Reinforced Resource Allocation in Fog Environment," Applied Computational Intelligence and Soft Computing, vol. 2022, 2022.
[19] M. Kumar, A. Kishor, J. K. Samariya, and A. Y. Zomaya, "An autonomic workload prediction and resource allocation framework for fog enabled industrial IoT," IEEE Internet of Things Journal, 2023.
[20] A. Asghari, H. Azgomi, and Z. Darvishmofarahi, "Multi-Objective edge server placement using the whale optimization algorithm and Game theory," Soft Computing, pp. 1-15, 2023.
[21] J.-S. Chou and D.-N. Truong, "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, vol. 389, p. 125535, 2021.
[22] H. Hu, Q. Wang, R. Q. Hu, and H. Zhu, "Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting," IEEE Internet of Things Journal, vol. 8, no. 24, pp. 17541-17556, 2021.
[23] Y.-C. Wu, T. Q. Dinh, Y. Fu, C. Lin, and T. Q. Quek, "A hybrid DQN and optimization approach for strategy and resource allocation in MEC networks," IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4282-4295, 2021.
[24]  L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H. Gandomi, "The arithmetic optimization algorithm," Computer methods in applied mechanics and engineering, vol. 376, p. 113609, 2021.
[25]  S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, "Multi-verse optimizer: a nature-inspired algorithm for global optimization," Neural Computing and Applications, vol. 27, pp. 495-513, 2016.
[26] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4: IEEE, pp. 1942-19.48.
[27] S. Mirjalili, "SCA: a sine cosine algorithm for solving optimization problems," Knowledge-based systems, vol. 96, pp. 120-133, 2016.
[28] S. Kaur, L. K. Awasthi, A. Sangal, and G. Dhiman, "Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization," Engineering Applications of Artificial Intelligence, vol. 90, p. 103541, 2020.
[29] S. Mirjalili and A. Lewis, "The whale optimization algorithm," Advances in engineering software, vol. 95, pp. 51-67, 2016.