[1] Peidro, J. E., Muñoz-Escoí, F. D., & Bernabéu-Aubán, J. M. (2024). Modeling microservice architectures. J. Syst. Softw., 213, 112041. https://doi.org/10.1016/j.jss.2024.112041.
[2] Lelovic, L., Huzinga, A., Goulis, G., Kaur, A., Boone, R., Muzrapov, U., ... & Cerny, T. (2024). Change impact analysis in microservice systems: A systematic literature review. Journal of Systems and Software, 112241.
[3] Howard, H., Malkhi, D., & Spiegelman, A. (2016). Flexible paxos: Quorum intersection revisited. arXiv preprint arXiv:1608.06696.
[4] Ahmed, A. (2018). Programming Languages and Systems: 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. Springer Nature.
[5] Baboi, M., Iftene, A., & Gîfu, D. (2019). Dynamic microservices to create scalable and fault tolerance architecture. Procedia Computer Science, 159, 1035-1044.
[6] Henning, S., & Hasselbring, W. (2024). Benchmarking scalability of stream processing frameworks deployed as microservices in the cloud. Journal of Systems and Software, 208, 111879.
[7] Lin, W., Sheng, X., & Qi, L. (2019). An Optimized Multi-Paxos Consensus Protocol for Practical Cloud Storage Applications. In Cyberspace Safety and Security: 11th International Symposium, CSS 2019, Guangzhou, China, December 1–3, 2019, Proceedings, Part I 11 (pp. 575-584). Springer International Publishing.
[8] Ailijiang, A., Charapko, A., & Demirbas, M. (2016, August). Consensus in the cloud: Paxos systems demystified. In 2016 25th International Conference on Computer Communication and Networks (ICCCN) (pp. 1-10). IEEE.
[9] Nakarmi, A., Kesharwani, H., Mallick, T., Jhingran, S., & Raj, G. (2024, April). A Comprehensive Study on Optimization Techniques for Microservices Deployment. In 2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT) (pp. 133-140). IEEE.
[10] Dong, H., & Liu, S. (2024). Asynchronous consensus quorum read: Pioneering read optimization for asynchronous consensus protocols. Electronics, 13(3), 481.
[11] Lampport, L. (1998). The part-time parliament. ACM Transactions on Computer Systems, 16(2), 133-169.
[12] Ongaro, D., & Ousterhout, J. (2014). In search of an understandable consensus algorithm. In 2014 USENIX annual technical conference (USENIX ATC 14) (pp. 305-319).
[13] Junqueira, F., Reed, B., and Serafini, M., “ZooKeeper’s atomic broadcast and linearizable operations,” in Proceedings of the Large Scale Distributed Systems and Middleware Workshop (LADIS’11), 2011.
[14] Kamil, S. N. S., Thomas, N., & Elsanosi, I. (2021, October). Performance evaluation of zookeeper atomic broadcast protocol. In EAI International Conference on Performance Evaluation Methodologies and Tools (pp. 56-71).
[15] Castro, M., & Liskov, B. (1999, February). Practical byzantine fault tolerance. In OsDI (Vol. 99, No. 1999, pp. 173-186).
[16] da Silva Pinheiro, T. F., Pereira, P., Silva, B., & Maciel, P. (2023). A performance modeling framework for microservices-based cloud infrastructures. The Journal of Supercomputing, 79(7), 7762-7803.
[17] Nawab, F., & Sadoghi, M. (2024). Consensus in Data Management: With Use Cases in Edge-Cloud and Blockchain Systems. Proceedings of the VLDB Endowment, 17(12), 4233-4236.
[18] Mwotil, A., Anderson, T., Kanagwa, B., Stavrinos, T., & Bainomugisha, E. (2024). LowPaxos: State Machine Replication for Low Resource Settings. IEEE Acces.
[19] Turkkan, B., Rodrigues, E., Kosar, T., Charapko, A., Ailijiang, A., & Demirbas, M. (2024). How to Evaluate Distributed Coordination Systems?--A Survey and Analysis. arXiv preprint arXiv:2403.09445.
[20] Johnson, R. (2025). Practical Replication Architectures and Protocols: Definitive Reference for Developers and Engineers. HiTeX Press.
[21] Amini, E., Miši, J., & Miši, V. B. (2025). Paxos With Priorities for Blockchain Applications. IEEE Transactions on Network and Service Management.
[22] Ferzo, B., & Zeebaree, S. R. (2024). Distributed Transactions in Cloud Computing: A Review Reliability and Consistency. The Indonesian Journal of Computer Science, 13(3).
[23] Jiang, T., Huang, X., Song, S., Wang, C., & Wang, J. (2024, May). On Tuning Raft for IoT Workload in Apache IoTDB. In 2024 IEEE 40th International Conference on Data Engineering (ICDE) (pp. 5307-5319). IEEE.
[24] Fareghzadeh, N., Seyyedi, M. A., & Mohsenzadeh, M. (2018). Dynamic performance isolation management for cloud computing services. The Journal of Supercomputing, 74, 417-455.
[25] Jiang, T., Huang, X., Song, S., Wang, C., & Wang, J. (2024, May). On Tuning Raft for IoT Workload in Apache IoTDB. In 2024 IEEE 40th International Conference on Data Engineering (ICDE) (pp. 5307-5319). IEEE.
[26] Fareghzadeh, N. (2022). An architecture supervisor scheme toward performance differentiation and optimization in cloud systems. The Journal of Supercomputing, 78(1), 1532-1563.
[27] Charapko, A., Ailijiang, A., & Demirbas, M. (2021, June). Pigpaxos: Devouring the communication bottlenecks in distributed consensus. In Proceedings of the 2021 International Conference on Management of Data (pp. 235-247).
[28] Hao, W., Xu, G., Wang, J., & Wen, Y. (2024, October). PPaxos: An Adaptive Pull-Based Group Consensus Protocol for Edge Networks. In 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 761-768). IEEE.
[29] Montgomery, D. C. (2001). Design and analysis of experiments, John Wiley & Sons. Inc., New York, 1997, 200-1.
[30] Fareghzadeh, N. (2019). Service Contract-Aware Quality Supervisory Methodology in Cloud Systems. Journal of Quality Engineering and Management, 9(2), 172-185.
[31] Xie, Y., et al. (2017). Characterizing delay variability in cloud data center networks. Proceedings of ACM SIGCOMM, 494–507.
[32] [32] M. H. Mohabbati Hamidi and M. Abbasi, "Efficient mechanism for determining a function for workload distribution in fog computing using classifier systems," The Journal of Theoretical and Applied Machine Intelligence, vol. 2, no. 1, pp. 1-13, 2024, doi: 10.22034/abmir.2024.20271.1030.
[33] [33] M. M. Hosseini and H. Zargari, "Energy-efficient clustering in multi-hop wireless sensor networks using multi-objective particle swarm optimization," The Journal of Theoretical and Applied Machine Intelligence, vol. 2, no. 2, pp. 67-81, 2025, doi: 10.22034/abmir.2025.22425.1077.
[34] [34] A. Doldi, A. Mozidi, and M. B. Gorji, "Designing a cloud computing based human resource optimization model for Tejarat Bank," Information Management Sciences and Technologies, vol. 10, no. 2, pp. 235-259, 2024, doi: 10.22091/stim.2023.9683.1980