[1] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, Jan. 2014, doi: 10.1016/j.compeleceng.2013.11.024.
[2] Y. Hu, Y. Zhang, and D. Gong, “Multiobjective Particle Swarm Optimization for Feature Selection With Fuzzy Cost,” IEEE Trans Cybern, vol. 51, no. 2, pp. 874–888, Feb. 2021, doi: 10.1109/TCYB.2020.3015756.
[3] W. Zhong, X. Chen, F. Nie, and J. Z. Huang, “Adaptive discriminant analysis for semi-supervised feature selection,” Inf Sci (N Y), vol. 566, pp. 178–194, Aug. 2021, doi: 10.1016/j.ins.2021.02.035.
[4] G. Roffo, S. Melzi, U. Castellani, A. Vinciarelli, and M. Cristani, “Infinite Feature Selection: A Graph-based Feature Filtering Approach,” IEEE Trans Pattern Anal Mach Intell, vol. 43, no. 12, pp. 4396–4410, Dec. 2021, doi: 10.1109/TPAMI.2020.3002843.
[5] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki, “A Survey on semi-supervised feature selection methods,” Pattern Recognit, vol. 64, pp. 141–158, Apr. 2017, doi: 10.1016/j.patcog.2016.11.003.
[6] T. Bhadra and S. Bandyopadhyay, “Supervised feature selection using integration of densest subgraph finding with floating forward–backward search,” Inf Sci (N Y), vol. 566, pp. 1–18, Aug. 2021, doi: 10.1016/j.ins.2021.02.034.
[7] B. C. Love, “Comparing supervised and unsupervised category learning,” Psychon Bull Rev, vol. 9, no. 4, pp. 829–835, Dec. 2002, doi: 10.3758/BF03196342.
[8] R. Zhang, H. Zhang, X. Li, and S. Yang, “Unsupervised Feature Selection With Extended OLSDA via Embedding Nonnegative Manifold Structure,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 5, pp. 2274–2280, May 2022, doi: 10.1109/TNNLS.2020.3045053.
[9] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Mach Learn, vol. 109, no. 2, 2020, doi: 10.1007/s10994-019-05855-6.
[10] C. Shi, Q. Ruan, and G. An, “Sparse feature selection based on graph Laplacian for web image annotation,” Image Vis Comput, vol. 32, no. 3, pp. 189–201, Mar. 2014, doi: 10.1016/j.imavis.2013.12.013.
[11] H. Barkia, H. Elghazel, and A. Aussem, “Semi-supervised Feature Importance Evaluation with Ensemble Learning,” in 2011 IEEE 11th International Conference on Data Mining, IEEE, Dec. 2011, pp. 31–40. doi: 10.1109/ICDM.2011.129.
[12] F. Nie, H. Huang, X. Cai, and C. Ding, “Efficient and robust feature selection via joint ℓ2, 1-norms minimization,” Adv Neural Inf Process Syst, vol. 23, 2010.
[13] L. Wang and S. Chen, “$ l_ {2, p} $ Matrix Norm and Its Application in Feature Selection,” arXiv preprint arXiv:1303.3987, 2013.
[14] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki, “A robust graph-based semi-supervised sparse feature selection method,” Inf Sci (N Y), vol. 531, pp. 13–30, Aug. 2020, doi: 10.1016/j.ins.2020.03.094.
[15] X. Li, Y. Zhang, and R. Zhang, “Semisupervised Feature Selection via Generalized Uncorrelated Constraint and Manifold Embedding,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 9, pp. 5070–5079, Sep. 2022, doi: 10.1109/TNNLS.2021.3069038.
[16] G. Sampson, D. E. Rumelhart, J. L. McClelland, and The PDP Research Group, “Parallel Distributed Processing: Explorations in the Microstructures of Cognition,” Language (Baltim), vol. 63, no. 4, p. 871, Dec. 1987, doi: 10.2307/415721.
[17] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009, doi: 10.1561/2200000006.
[18] S. Feng and M. F. Duarte, “Graph autoencoder-based unsupervised feature selection with broad and local data structure preservation,” Neurocomputing, vol. 312, pp. 310–323, Oct. 2018, doi: 10.1016/j.neucom.2018.05.117.
[19] R. Shang, Z. Zhang, L. Jiao, C. Liu, and Y. Li, “Self-representation based dual-graph regularized feature selection clustering,” Neurocomputing, vol. 171, pp. 1242–1253, Jan. 2016, doi: 10.1016/j.neucom.2015.07.068.
[20] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proceedings of the 25th International Conference on Machine Learning, 2008. doi: 10.1145/1390156.1390294.
[21] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, 2014. doi: 10.61603/ceas.v2i1.33.
[22] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.
[23] Z. Xu, X. Chang, F. Xu, and H. Zhang, “$L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver,” IEEE Trans Neural Netw Learn Syst, vol. 23, no. 7, pp. 1013–1027, Jul. 2012, doi: 10.1109/TNNLS.2012.2197412.
[24] X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, “Missing Value Estimation for Mixed-Attribute Data Sets,” IEEE Trans Knowl Data Eng, vol. 23, no. 1, pp. 110–121, Jan. 2011, doi: 10.1109/TKDE.2010.99.
[25] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-cluster data,” in Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA: ACM, Jul. 2010, pp. 333–342. doi: 10.1145/1835804.1835848.
[26] L. Bottou and V. Vapnik, “Local Learning Algorithms,” Neural Comput, vol. 4, no. 6, pp. 888–900, Nov. 1992, doi: 10.1162/neco.1992.4.6.888.
[27] R. Sheikhpour, “Semi-supervised sparse feature selection based on Hessian regularization and Fisher discriminant analysis,” Tabriz J. Electr. Eng., vol. 52, no. 2, pp. 125–135, 2022. doi: 10.22034/tjee.2022.15428. [In Persian]
[28] R. Sheikhpour, K. Berahmand, and S. Forouzandeh, “Hessian-based semi-supervised feature selection using generalized uncorrelated constraint,” Knowl Based Syst, vol. 269, p. 110521, Jun. 2023, doi: 10.1016/j.knosys.2023.110521.
[29] R. Sheikhpour, “A local spline regression-based framework for semi-supervised sparse feature selection,” Knowl Based Syst, vol. 262, p. 110265, Feb. 2023, doi: 10.1016/j.knosys.2023.110265.
[30] Z. Wang, F. Nie, L. Tian, R. Wang, and X. Li, “Discriminative Feature Selection via A Structured Sparse Subspace Learning Module,” in Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, California: International Joint Conferences on Artificial Intelligence Organization, Jul. 2020, pp. 3009–3015. doi: 10.24963/ijcai.2020/416.