[1] S. Ghasaee and R. Ravanmehr, “Short-Term Prediction of Electrical Load Consumption Using Deep Neural Networks, CNN, and LSTM,” J. Qual. Product. Iran Electr. Ind., vol. 10, no. 1, pp. 35–51, 2021 [In Persian].
[2] G. Zhang and M. Qi, “Neural Network Forecasting for Seasonal and Trend Time Series,” Eur. J. Oper. Res., vol. 160, no. 2, pp. 501-514, 2005, doi: 10.1016/j.ejor.2003.08.037.
[3] H. Pashaei and M. Dehkharghani, “Predictive Modeling of Energy Consumption in the Steel Industry Using CatBoost Regression: A Data-Driven Approach for Sustainable Energy Management,” J. Clean. Prod., vol. 401, p. 136706, 2023, doi: 10.1016/j.jclepro.2023.136706.
[4] A.Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 2020, doi: 10.1016/j.physd.2020.132306.
[5] S. Arslan, “A Hybrid Forecasting Model Using LSTM and Prophet for Energy Consumption with Decomposition of Time Series Data,” PeerJ Comput. Sci., vol. 8, p. e1001, 2022, doi: 10.7717/peerj-cs.1001.
[6] R. Zhu, N. Li, Y. Duan, G. Li, G. Liu, F. Qu, et al., “Well-Production Forecasting Using Machine Learning with Feature Selection and Automatic Hyperparameter Optimization,” Energies, vol. 18, no. 1, p. 99, dic. 2024, doi: 10.3390/en18010099.
[7] F. He, J. Zhou, Z.-k. Feng, G. Liu, and Y. Yang, “A Hybrid Short-Term Load Forecasting Model Based on Variational Mode Decomposition and Long Short-Term Memory Networks, Considering Relevant Factors with a Bayesian Optimization Algorithm,” Appl. Energy, vol. 237, pp. 108–117, Mar. 2019, doi: 10.1016/j.apenergy.2019.01.055.
[8] T. Gao, Y. Sun, and C. Li, “LSTM Network Hyperparameter Optimization for Stock Price Prediction Using the Optuna Framework,” J. Phys.: Conf. Ser., vol. 1785, no. 1, p. 012061, 2021, doi: 10.1088/1742-6596/1785/1/012061.
[9] D. Bunn and E. Farmer, “Review of Short-Term Forecasting Methods in the Electric Power Industry,” in Comparative Models for Electrical Load Forecasting, D. Bunn and E. Farmer, Eds. Berlin: Springer, 1985, pp. 13-30.
[10] Moghram and S. Rahman, “Analysis and Evaluation of Five Short-Term Load Forecasting Techniques,” IEEE Trans. Power Syst., vol. 4, no. 4, pp. 1484-1491, Nov. 1989.
[11] K. Amasyali and N. M. El-Gohary, “A Review of Data-Driven Building Energy Consumption Prediction Studies,” Renew. Sustain. Energy Rev., vol. 81, pp. 1192-1205, Jan. 2018.
[12] M. H. L. Lee, Y. C. Ser, G. Selvachandran, P. H. Thong, L. Cuong, L. H. Son, et al., “A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models,” Mathematics, vol. 10, no. 1329, pp. 1-23, 2022.
[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer, 2017.
[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.
[15] Y. Zheng, J. Zhang, and Y. Wang, “Short-Term Load Forecasting Based on a Long Short-Term Memory Neural Network,” J. Mod. Power Syst. Clean Energy, vol. 5, no. 2, pp. 296-302, Mar. 2017.
[16] S. Pei, H. Qin, L. Yao, Y. Liu, C. Wang, and J. Zhou, “Multi-Step Ahead Short-Term Load Forecasting Using Hybrid Feature Selection and Improved Long Short-Term Memory Network,” Energies, vol. 13, no. 16, p. 4121, Aug. 2020, doi: 10.3390/en13164121.
[17] M. Zohaki Raht and H. Sadeghi Saghadol, “Modeling and Forecasting of Iran's Short-Term Electricity Consumption Using Neural Network and TPE Algorithm,” Journal of Energy Economics Studies, vol. 20, no. 83, pp. 159-182, 2024 [In Persian].
[18] J. Zhu, Y. Wang, C. Lai, and X. Zhou, “Deep Learning-Based Energy Consumption Prediction Model for Green Industrial Parks,” Appl. Artif. Intell., vol. 39, no. 1, p. 2462375, 2021.
[19] L. Shen, W. Chen, and J. Kwok, “Deep Learning for Short-Term Energy Consumption Forecasting of Smart Buildings Considering Microgrid and External Factors,” Mathematics, vol. 10, no. 1329, pp. 1-23, 2022.
[20] S. Sayadinejad, A. Esmailzadeh Maghari, and M. R. Rostami, “Presenting a Bitcoin Return Prediction Model Using a Hybrid Deep Learning Signal Decomposition Algorithm (CEEMD-DL),” Quarterly Journal of Financial Economics, vol. 17, no. 62, pp. 217-238, 2022 [In Persian].
[21] J. Kim, H. Kim, H. Kim, D. Lee, and S. Yoon, “A Comprehensive Survey of Deep Learning for Time Series Forecasting: Architectural Diversity and Open Challenges,” Artif. Intell. Rev., vol. 58, p. 216, Apr. 2025.
[22] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis,” Proc. R. Soc. Lond. A, vol. 454, no. 1971, pp. 903-995, Mar. 1998.
[23] K. Dragomiretskiy and D. Zosso, “Variational Mode Decomposition,” IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531-544, Feb. 2014, doi: 10.1109/TSP.2013.2288675.
[24] Y. Ruan, G. Wang, H. Meng, and F. Qian, “A Hybrid Model for Power Consumption Forecasting Using VMD-Based Long Short-Term Memory Neural Network,” Front. Energy Res., vol. 9, p. 772508, Feb. 2022, doi: 10.3389/fenrg.2021.772508.
[25] I. O. Ekundayo, “Optuna optimization-based CNN-LSTM model for predicting electric power energy consumption,” M.S. thesis, School of Comput., Nat. College of Ireland, Dublin, 2020.
[26] C. Gharai, S. K. Mohapatra, S. Parida, C. Dora, R. K. Mohanta, and S. Chakravarty, “Optimized Deep Learning Model for Power Consumption Prediction Using Hyperparameter Tuning Techniques,” in Int. Conf. Intell. Cloud Comput. (ICoICC), Bhubaneswar, India, 2025, pp. 1-6, doi: 10.1109/ICoICC64033.2025.11052111.
[27] R. Uddin, M. R. Hazari, S. Ahmad, C. A. Hossain, M. S. Rahman Zishan, and A. Ahmed, “Short-Term Load Forecasting Using Deep Learning Algorithms with Hyperparameter Optimization,” in 4th Int. Conf. Robot., Electr. Signal Process. Techn. (ICREST), Dhaka, Bangladesh, 2025, pp. 366-371, doi: 10.1109/ICREST63960.2025.10914446.
[28] S. Bouktif, R. F'Haim, and M. Lazaar, “A Novel Hybrid Model for Short-Term Load Forecasting Using LSTM and Metaheuristic Optimization Algorithms,” Energy, vol. 196, p. 117042, Apr. 2020.
[29] J. Brownlee, Deep Learning for Time Series Forecasting: Theory to Practice. San Juan, PR: Machine Learning Mastery, 2018.
[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA: MIT Press, 2016.
[31] J. Zhao, G. Nie, and Y. Wen, “Monthly Precipitation Prediction in Luoyang City Based on EEMD-LSTM-ARIMA Model,” Water Sci. Technol., vol. 87, no. 1, pp. 318–335, Jan. 2023, doi: 10.2166/wst.2022.425.
[32] Y. Ren, Z. Yan, D. Liu, J. Hou, and W. Zhou, “Optimized EWT-Seq2Seq-LSTM with Attention Mechanism for Insulator Fault Prediction,” Energies, vol. 15, no. 2, p. 528, Jan. 2022, doi: 10.3390/en15020528.
[33] A. Alghamdi and A. Desuqi, “Predicting Electricity Consumption Using Machine Learning Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 11, pp. 384-391, 2020.
[34] M. Alimohammadi Ardakani, M. H. Karimi-Zarchi, and D. Shishebori, “A Hybrid Forecasting Model for Accurate Prediction of Building Energy Consumption Based on Multi-Stage Decomposition and Optimized Deep Learning,” Energy, vol. 305, p. 126955, 2024.
[35] R. J. Hyndman and G. Athanasopoulos. (2021). Forecasting: Principles and Practice (3rd ed.) [Online]. Available: https://otexts.com/fpp3/
[36] B. G. M. and G. N. Pillai, “Hyperparameter Optimization of Long Short Term Memory Models for Interpretable Electrical Fault Classification,” IEEE Access, vol. 11, pp. 123688-123704, Nov. 2023, doi: 10.1109/ACCESS.2023.3330056.