هوشمند سازی کنترل کیفیت و تشخیص خرابی در فرآیندهای تولید فولاد با استفاده از یادگیری عمیق و پردازش تصویر به‌منظور بهینه‌سازی مصرف انرژی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی کامپیوتر، دانشگاه علم و هنر، یزد، ایران

2 معلم، آموزش و پرورش هرمزگان، گروه کامپیوتر آموزش و پرورش رودان، هرمزگان، ایران

10.22034/abmir.2025.23661.1167

چکیده

در سال‌های اخیر، افزایش رقابت در صنعت فولاد و ضرورت کاهش هزینه‌ها در کنار بهبود کیفیت، استفاده از فناوری‌های هوشمند مبتنی بر یادگیری عمیق را بیش‌ازپیش ضروری کرده است. یکی از چالش‌های اصلی در این حوزه، کنترل کیفیت محصولات و شناسایی سریع نواقص سطحی است که مستقیماً بر بهره‌وری خطوط تولید و میزان مصرف انرژی اثر می‌گذارد. در این پژوهش یک چارچوب یکپارچه برای کنترل کیفیت و پیش‌بینی مصرف انرژی در فرآیند تولید فولاد ارائه شده است که از ترکیب پردازش تصویر و تحلیل داده‌های حسگری استفاده می‌کند. برای بخش کنترل کیفیت، تصاویر پایگاه داده NEU Surface Defect به‌عنوان داده مرجع به کار گرفته شد و برای بخش انرژی نیز یک مجموعه داده فرآیندی شبیه‌سازی‌شده در محیط صنعتی مورد استفاده قرار گرفت. معماری پیشنهادی شامل یک شبکه چندشاخه‌ای است که در آن شبکه‌ی کانولوشنی (CNN) به‌عنوان استخراج‌کننده ویژگی‌های تصویری و شبکه‌ی LSTM برای مدل‌سازی وابستگی‌های زمانی داده‌های انرژی به کار رفته‌اند. نتایج نشان می‌دهد که مدل پیشنهادی در بخش کنترل کیفیت به دقت 7/98 درصد و امتیاز F1 برابر با 5/98 درصد رسیده و در پیش‌بینی مصرف انرژی نیز به RMSE برابر 082/0 و MAPE معادل 1/2 درصد دست یافته است. این عملکرد نسبت به روش‌های پیشین برتری قابل‌توجهی داشته و منجر به کاهش ضایعات، بهبود دقت تشخیص عیوب و صرفه‌جویی معنادار در مصرف انرژی شده است. چارچوب پیشنهادی می‌تواند به‌عنوان گامی عملی در جهت حرکت به‌سوی تولید سبز و ارتقای پایدار بهره‌وری صنعتی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Intelligent Quality Control and Defect Detection in Steel Manufacturing Processes Using Deep Learning and Image Processing for Energy Optimization

نویسندگان [English]

  • Fatemeh Saadatjou 1
  • Moslem Molalie 2
1 Assistant Professor, Department of Computer Engineering, Science and Arts University, Yazd, Iran
2 Teacher, Hormozgan Education, Rudan Education Computer Group, Hormozgan, Iran
چکیده [English]

In recent years, the increasing competition in the steel industry and the urgent demand for reducing costs while improving quality have accelerated the adoption of artificial intelligence technologies. One of the major challenges in this domain is ensuring accurate product quality control and efficient energy management, both of which directly affect productivity and sustainability. This study proposes an integrated deep learning framework for simultaneous quality inspection and energy optimization in steel manufacturing. High-resolution surface images from the NEU surface defect dataset, combined with simulated energy consumption records, were pre-processed through filtering, normalization, and temporal alignment techniques. A hybrid multi-branch architecture, combining convolutional neural networks (CNN) for defect detection and CNN-LSTM for energy prediction, was implemented and optimized using the NSGA-II multi-objective algorithm. Experimental results demonstrate that the proposed approach achieved 98.7% accuracy and an F1-score of 98.5% in defect detection, while reducing the prediction error of energy consumption to an RMSE of 0.082 and MAPE of 2.1%. These improvements not only outperform recent state-of-the-art methods but also contribute to reducing rework, minimizing scrap rates, and achieving measurable energy savings. The proposed methodology offers a practical step toward green steel production and the realization of Industry 4.0 in heavy industries.

کلیدواژه‌ها [English]

  • Artificial Intelligence
  • Deep Learning
  • CNN-LSTM
  • Steel Industry
[1]     X. Zhang, Y. Chen, and S. Wang, "Surface defect detection in hot-rolled steel strips using improved YOLOv5," Sci. Rep., vol. 14, p. 1225, 2024. doi: 10.1038/s41598-024-67891-2.
[2]     J. Li, Y. Wang, and Z. Liu, "Deep learning for industrial fault detection: A review," IEEE Trans. Ind. Informat., vol. 19, no. 6, pp. 5678–5690, 2023. doi: 10.1109/TII.2022.3214567.
[3]     R. Kumar and A. Singh, "Machine learning models for energy consumption prediction in the steel industry," Energy Rep., vol. 9, pp. 1234–1247, 2023. doi: 10.1016/j.egyr.2023.01.045.
[4]     W. Sun, Y. Zhao, and L. Ma, "Hybrid deep learning frameworks for energy-efficient manufacturing," J. Clean. Prod., vol. 453, p. 141237, 2025. doi: 10.1016/j.jclepro.2025.141237.
[5]     Q. Yao, J. Chen, and Z. Li, "Integrated quality control and energy optimization in steel production using AI," J. Manuf. Syst., vol. 69, pp. 451–463, 2023. doi: 10.1016/j.jmsy.2023.07.012.
[6]     H. Wang and Y. Xu, "Limitations of separate AI models for defect detection and energy prediction in industrial manufacturing," IEEE Access, vol. 12, pp. 15532–15545, 2024. doi: 10.1109/ACCESS.2024.3356712.
[7]     S. Kim, J. Park, and D. Lee, "Unified deep learning framework for defect detection, predictive maintenance, and energy optimization in steel manufacturing," Appl. Energy, vol. 353, p. 121945, 2025. doi: 10.1016/j.apenergy.2025.121945.
[8]     H. Liu, Y. Zhang, and M. Zhou, "Crack detection in steel surfaces using multi-scale CNN," Mater. Today Commun., vol. 36, p. 107469, 2023. doi: 10.1016/j.mtcomm.2023.107469.
[9]     F. Chen, W. Li, and Q. Zhao, "IoT-based predictive maintenance system for steel manufacturing," IEEE Internet Things J., vol. 11, no. 8, pp. 13567–13578, 2024. doi: 10.1109/JIOT.2024.3345678.
[10] R. Patel, S. Kumar, and A. Mehta, "Machine vision-based defect classification in steel manufacturing," J. Manuf. Process., vol. 80, pp. 345–355, 2022. doi: 10.1016/j.jmapro.2022.07.013.
[11] Z. Wang, D. Yu, and Z. Wu, "Real-time machine-learning-based optimization using input convex LSTM," arXiv, 2023. [Online]. Available: https://arxiv.org/abs/2311.07202
[12] Y. Lv, R. Hu, B. Qian, and J. B. Yang, "Q-learning-based hierarchical cooperative local search for steelmaking-continuous casting scheduling," arXiv, 2025. [Online]. Available: https://arxiv.org/abs/2506.08608
[13] N. Lee, M. Shin, A. Sagingalieva, A. J. Tripathi, K. Pinto, and A. Melnikov, "Predictive control of blast furnace temperature in steelmaking with hybrid depth-infused quantum neural networks," arXiv, 2025. [Online]. Available: https://arxiv.org/abs/2504.12389
[14] M. Abbasi, M. Plaza-Hernandez, J. Prieto, and J. M. Corchado, "Artificial intelligence of things infrastructure for quality control in cast manufacturing," Appl. Sci., vol. 15, no. 4, p. 2068, 2023. [Online]. Available: https://www.mdpi.com/2076-3417/15/4/2068
[15] V. Varriale, A. Cammarano, F. Michelino, and M. Caputo, "Critical analysis of AI integration with cutting-edge technologies for production systems," J. Intell. Manuf., 2023. doi: 10.1007/s10845-023-02244-8.
[16] [16] D. Zhou, K. Xu, Z. Lv, J. Yang, M. Li, F. He, and G. Xu, "Intelligent manufacturing technology in the steel industry of China: A review," Sensors, vol. 22, no. 21, p. 8194, 2022. doi: 10.3390/s22218194.
[17] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical Methods, 3rd ed. Hoboken, NJ, USA: Wiley, 2015.
[18] [18] P. R. Rosenbaum, "Exact confidence intervals for nonconstant effects by inverting the signed‐rank test," J. Amer. Stat. Assoc., 2012. doi: 10.1198/0003130031405.
[19] Y. Zhang, S. Wang, Z. Jiang, J. Wang, and Y. Ma, "Strip steel surface defect detection based on lightweight YOLOv5 with feature fusion," Front. Neurorobot., vol. 17, p. 1154214, 2023. doi: 10.3389/fnbot.2023.1154214.