[1] X. Zhang, Y. Chen, and S. Wang, "Surface defect detection in hot-rolled steel strips using improved YOLOv5," Sci. Rep., vol. 14, p. 1225, 2024. doi: 10.1038/s41598-024-67891-2.
[2] J. Li, Y. Wang, and Z. Liu, "Deep learning for industrial fault detection: A review," IEEE Trans. Ind. Informat., vol. 19, no. 6, pp. 5678–5690, 2023. doi: 10.1109/TII.2022.3214567.
[3] R. Kumar and A. Singh, "Machine learning models for energy consumption prediction in the steel industry," Energy Rep., vol. 9, pp. 1234–1247, 2023. doi: 10.1016/j.egyr.2023.01.045.
[4] W. Sun, Y. Zhao, and L. Ma, "Hybrid deep learning frameworks for energy-efficient manufacturing," J. Clean. Prod., vol. 453, p. 141237, 2025. doi: 10.1016/j.jclepro.2025.141237.
[5] Q. Yao, J. Chen, and Z. Li, "Integrated quality control and energy optimization in steel production using AI," J. Manuf. Syst., vol. 69, pp. 451–463, 2023. doi: 10.1016/j.jmsy.2023.07.012.
[6] H. Wang and Y. Xu, "Limitations of separate AI models for defect detection and energy prediction in industrial manufacturing," IEEE Access, vol. 12, pp. 15532–15545, 2024. doi: 10.1109/ACCESS.2024.3356712.
[7] S. Kim, J. Park, and D. Lee, "Unified deep learning framework for defect detection, predictive maintenance, and energy optimization in steel manufacturing," Appl. Energy, vol. 353, p. 121945, 2025. doi: 10.1016/j.apenergy.2025.121945.
[8] H. Liu, Y. Zhang, and M. Zhou, "Crack detection in steel surfaces using multi-scale CNN," Mater. Today Commun., vol. 36, p. 107469, 2023. doi: 10.1016/j.mtcomm.2023.107469.
[9] F. Chen, W. Li, and Q. Zhao, "IoT-based predictive maintenance system for steel manufacturing," IEEE Internet Things J., vol. 11, no. 8, pp. 13567–13578, 2024. doi: 10.1109/JIOT.2024.3345678.
[10] R. Patel, S. Kumar, and A. Mehta, "Machine vision-based defect classification in steel manufacturing," J. Manuf. Process., vol. 80, pp. 345–355, 2022. doi: 10.1016/j.jmapro.2022.07.013.
[11] Z. Wang, D. Yu, and Z. Wu, "Real-time machine-learning-based optimization using input convex LSTM," arXiv, 2023. [Online]. Available: https://arxiv.org/abs/2311.07202
[12] Y. Lv, R. Hu, B. Qian, and J. B. Yang, "Q-learning-based hierarchical cooperative local search for steelmaking-continuous casting scheduling," arXiv, 2025. [Online]. Available: https://arxiv.org/abs/2506.08608
[13] N. Lee, M. Shin, A. Sagingalieva, A. J. Tripathi, K. Pinto, and A. Melnikov, "Predictive control of blast furnace temperature in steelmaking with hybrid depth-infused quantum neural networks," arXiv, 2025. [Online]. Available: https://arxiv.org/abs/2504.12389
[14] M. Abbasi, M. Plaza-Hernandez, J. Prieto, and J. M. Corchado, "Artificial intelligence of things infrastructure for quality control in cast manufacturing," Appl. Sci., vol. 15, no. 4, p. 2068, 2023. [Online]. Available: https://www.mdpi.com/2076-3417/15/4/2068
[15] V. Varriale, A. Cammarano, F. Michelino, and M. Caputo, "Critical analysis of AI integration with cutting-edge technologies for production systems," J. Intell. Manuf., 2023. doi: 10.1007/s10845-023-02244-8.
[16] [16] D. Zhou, K. Xu, Z. Lv, J. Yang, M. Li, F. He, and G. Xu, "Intelligent manufacturing technology in the steel industry of China: A review," Sensors, vol. 22, no. 21, p. 8194, 2022. doi: 10.3390/s22218194.
[17] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical Methods, 3rd ed. Hoboken, NJ, USA: Wiley, 2015.
[18] [18] P. R. Rosenbaum, "Exact confidence intervals for nonconstant effects by inverting the signed‐rank test," J. Amer. Stat. Assoc., 2012. doi: 10.1198/0003130031405.
[19] Y. Zhang, S. Wang, Z. Jiang, J. Wang, and Y. Ma, "Strip steel surface defect detection based on lightweight YOLOv5 with feature fusion," Front. Neurorobot., vol. 17, p. 1154214, 2023. doi: 10.3389/fnbot.2023.1154214.