مدل‌سازی فرآیند در کوره گندله‌سازی با استفاده از روش‌های هوشمند: مطالعه موردی در شرکت معدنی و صنعتی گل‌گهر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بخش مهندسی برق، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 استاد بخش مهندسی برق، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران

3 کارشناسی ارشد، مجتمع معدنی و صنعتی گل‌گهر سیرجان، کرمان، ایران

10.22034/abmir.2025.23568.1156

چکیده

فرآیند گندله‌سازی یکی از مراحل کلیدی زنجیره تولید فولاد است که در آن کنسانتره سنگ‌آهن به گندله‌های  قابل مصرف در کوره بلند تبدیل می‌شود. مرحله پخت در کوره، به‌دلیل تأثیر مستقیم توزیع دما و فشار بر ویژگی‌های فیزیکی و مکانیکی گندله، یکی از عوامل اصلی در کیفیت محصول است. هدف این پژوهش، توسعه مدلی داده‌محور برای پیش‌بینی رفتار کوره گندله‌سازی شرکت معدنی و صنعتی گل‌گهر بر پایه داده‌های عملیاتی واقعی است. بدین منظور، متغیرهای ورودی و خروجی فرآیند جمع‌آوری و پس از پیش‌پردازش، انتخاب ویژگی با سه روش امتیاز-اف، اطلاعات متقابل و ضریب همبستگی پیرسون انجام شد. سپس مدل‌های رگرسیون خطی چندگانه، جنگل تصادفی، k-نزدیک‌ترین همسایه و شبکه عصبی پرسپترون چندلایه در چارچوب چندورودی-چندخروجی برای پیش‌بینی همزمان ۳۶ متغیر دما و ۳۱ متغیر فشار آموزش داده شدند. نتایج نشان داد روش انتخاب ویژگی مبتنی بر اطلاعات متقابل موجب بهبود عملکرد مدل‌های غیرخطی شده و شبکه عصبی چندلایه بالاترین دقت را با میانگین ضریب تعیین50/91 درصد برای دما و 62/89 درصد برای فشار به دست آورد. یافته‌ها بیانگر آن است که استفاده از رویکردهای یادگیری داده‌محور می‌تواند رفتار پیچیده کوره را با دقت بالا مدل کرده و بستر مناسبی برای طراحی سامانه‌های کنترلی هوشمند و بهینه‌سازی شرایط پخت فراهم سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Intelligent Process Modeling of a Pelletizing Furnace: A Case Study at Golgohar Mining and Industrial Company

نویسندگان [English]

  • Mohadese Rezaei 1
  • Hossein Nezamabadi-pour 2
  • Reza Khksar-pour 3
1 PhD Student, Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
2 Professor, Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
3 MSc, Golgohar Mining and Industrial Company, Sirjan, Kerman, Iran
چکیده [English]

The pelletizing process is a key stage in the steel production chain, during which iron ore concentrate is transformed into pellets suitable for use in blast furnaces. The induration (firing) stage within the furnace plays a critical role in determining product quality, as the distribution of temperature and pressure directly affects the physical and mechanical properties of the pellets. The objective of this study is to develop a data-driven model to predict the behavior of the pelletizing furnace at Golgohar Mining and Industrial Company based on real operational data. To this end, process input and output variables were collected and preprocessed, and feature selection was performed using three methods: F-score, mutual information, and Pearson correlation coefficient. Subsequently, Multiple Linear Regression, random forest, k-nearest neighbors, and multilayer perceptron neural network models were trained within a multiple-input–multiple-output (MIMO) framework to simultaneously predict 36 temperature variables and 31 pressure variables. The results indicated that the mutual information-based feature selection method improved the performance of nonlinear models, while the multilayer perceptron achieved the highest accuracy, with an average coefficient of determination of 91.50% for temperature and 89.62% for pressure. These findings demonstrate that data-driven learning approaches can accurately model the complex behavior of the furnace and provide a suitable foundation for designing intelligent control systems and optimizing firing conditions

کلیدواژه‌ها [English]

  • Intelligent Modeling
  • Machine Learning
  • Feature Selection
  • multilayer perceptron neural network
  • pelletizing furnace
[1]     F. Habashi, Handbook of extractive metallurgy. Wiley-Vch, 1997.
[2]     Saeedi and N. Sotoudeh, Iron Production. Isfahan University of Technology, Jihad Daneshgahi Press, 2006. [In Persian].
[3]     M. Alizadeh, M. Alizadeh, and H. Jeylan. “Creating optimal conditions for producing suitable green pellets from iron ore concentrates with low specific surface area using organic and mineral additives,” Journal of Metallurgical Engineering, vol. 21, no. 3, pp. 216–224, 2018. [In Persian].
[4]     K. Meier, Y. Nabialahi, and A. Mansouri Aliabadi. Iron Ore Pelletizing. Shamloo Publishing, 2012. [In Persian].
[5]     B. Abazarpoor, R. Hejazi, M. Saghaeian, and V. Sheikhzadeh, “Effect of iron ore particle size and shape on green pellet quality,” in International Mineral Processing Congress, Moscow, 2018.
[6]     L. Lu, Iron ore: mineralogy, processing and environmental sustainability, Elsevier, 2015.
[7]     K. Meyer, Pelletizing of iron ores, Springer-Verlag, 1980.
[8]     S. Sadrnezhaad, A. Ferdowsi, and H. Payab, “Mathematical model for a straight grate iron ore pellet induration process of industrial scale,” Computational Materials Science, vol. 44, no. 2, pp. 296-302, 2008.
[9]     M. Barati, “Dynamic simulation of pellet induration process in straight-grate system,” International journal of mineral processing, vol. 89, no. 1-4, pp. 30-39, 2008.
[10] H. Nezamabadipoor, M. Rezaei, and A. Atighi. Statistical and Intelligent Modeling in Engineering and Industry. Shahid Bahonar University of Kerman Press, 2024. [In Persian].
[11] T. Umadevi, P. P. Kumar, P. Kumar, N. F. Lobo, and M. Ranjan, “Investigation of factors affecting pellet strength in straight grate induration machine,” Ironmaking & steelmaking, vol. 35, no. 5, pp. 321-326, 2008.
[12] H. Zhou, Y. He, B. Li, D. Song, Q. Zhu, and Y. Li, “Ironmaking process under artificial intelligence technology: A review,” Ironmaking & Steelmaking, 2024.
[13] A. J. Deo, S. K. Behera, and D. P. Das, “Online monitoring of iron ore pellet size distribution using lightweight convolutional neural network,” IEEE Transactions on Automation Science and Engineering, vol. 21, no. 2, pp. 1974-1985, 2023.
[14] F. Honpeng and G. Runlong, “Practice of Artificial Intelligence for Iron Ore Pelletizing System,” in 2024 5th IEEE Global Conference for Advancement in Technology (GCAT), 2024, pp. 1-4.
[15] Y.-h. Gong, C.-h. Wang, J. Li, M. N. Mahyuddin, and M. T. A. Seman, “Application of deep learning in iron ore sintering process: a review,” Journal of Iron and Steel Research International, vol. 31, no. 5, pp. 1033-1049, 2024.
[16] Q. Cao, C. Chi, and J. Shan, “Can artificial intelligence technology reduce carbon emissions? A global perspective,” Energy Economics, vol. 143, p. 108285, 2025.
[17] M. M. Carvalho, D. G. Faria, M. G. Pérez, M. Cardoso, and E. K. Vakkilainen, “Review on mathematical models for travelling-grate iron oxide pellet induration furnaces,” Energy Procedia, vol. 120, pp. 588-595, 2017.
[18] C. Cavalcanti, G. Wanderley, D. Braga, R. Brito, L. Vasconcelos, and K. D. Brito, “Rigorous modeling of the Traveling Grate stage in the iron ore pellet induration process,” Journal of Materials Research and Technology, vol. 31, pp. 3410-3424, 2024.
[19] Y. Wang, Y. Xu, X. Song, Q. Sun, J. Zhang, and Z. Liu, “Novel method for temperature prediction in rotary kiln process through machine learning and CFD,” Powder Technology, vol. 439, p. 119649, 2024.
[20] S. Mun and J. Yoo, “Operating Key Factor Analysis of a Rotary Kiln Using a Predictive Model and Shapley Additive Explanations,” Electronics, vol. 13, no. 22, p. 4413, 2024.
[21] J. Mourão, M. Huerta, U. de Medeiros, I. Cameron, K. O’Leary, and C. Howey, “Guidelines for selecting pellet plant technology,” in Proceedings of the 6th International Congress on the Science and Technology of Ironmaking—ICSTI, 2012.
[22] S. Ding, “Feature selection based F-score and ACO algorithm in support vector machine,” in Second International Symposium on Knowledge Acquisition and Modeling, 2009, pp. 19-23.
[23] C.-K. Zhang and H. Hu, “Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster,” in International Conference on Machine Learning and Cybernetics, 2005, vol. 3, pp. 1728-1732.
[24] A. Sheikhi. Statistical Analysis and Modeling. Hamrah Elm Publishing, 2018. [In Persian].
[25] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32, 2001.
[26] M. Rezaei and H. Nezamabadi-pour, “A Hybridization Method of Prototype Generation and Prototype Selection for K-NN Rule Based on GSA,” Journal of AI and Data Mining, vol. 10, no. 2, pp. 257-268, 2022.
[27] F. Rosenblatt, “The perceptron, a perceiving and recognizing automaton: (Project Para),” Cornell Aeronautical Laboratory, 1957.
[28] M. T. Mitchell, Machine learning, New York: McGraw-hill, 2007.
[29] Y. Bengio, I. Goodfellow, and A. Courville, Deep learning, MIT press Cambridge, MA, USA, 2017.
[30] M. Vazan. Deep Learning: Principles, Concepts, and Approaches. Miad Andisheh Publishing, 2020. [In Persian].
[31] Z. Liu, “A method of SVM with normalization in intrusion detection,” Procedia Environmental Sciences, vol. 11, pp. 256-262, 2011.
[32] K. Zhong, P. Jain, and I. S. Dhillon, “Mixed linear regression with multiple components,” Advances in neural information processing systems, vol. 29, 2016.
[33] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers-a tutorial,” ACM computing surveys (CSUR), vol. 54, no. 6, pp. 1-25, 2021.
[34] G. Louppe, Understanding random forests: From theory to practice. Universite de Liege (Belgium), 2014.