محمدی، سید علی و عندلیب، اعظم،1395،سیستم های توصیه گر و چالش شروع سرد : بررسی راه کارها،اولین کنفرانس ملی مهندسی کامپیوتر، علوم کامپیوتر و فناوری اطلاعات،قم
Jiang, P. Cui, N. J. Yuan, X. Xie, and S. Yang, “Little Is Much: Bridging Cross-Platform Behaviors through Overlapped Crowds,” 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 13–19, 2016, doi: 10.1609/AAAI.V30I1.10001.
Zhu, C. Chen, Y. Wang, G. Liu, and X. Zheng, “DTCDR: A framework for dual-target cross-domain recommendation,” International Conference on Information and Knowledge Management, Proceedings, pp. 1533–1542, Nov. 2019, doi: 10.1145/3357384.3357992.
Man, H. Shen, X. Jin, and X. Cheng, “Cross-domain recommendation: An embedding and mapping approach,” IJCAI International Joint Conference on Artificial Intelligence, vol. 0, pp. 2464–2470, 2017, doi: 10.24963/IJCAI.2017/343.
Wang, Z. Peng, S. Wang, P. S. Yu, W. Fu, and X. Hong, “Cross-Domain Recommendation for Cold-Start Users via Neighborhood Based Feature Mapping,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10827 LNCS, pp. 158–165, Mar. 2018, doi: 10.1007/978-3-319-91452-7_11.
Zhu et al., “Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start Users,” SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1813–1817, May 2021, doi: 10.1145/3404835.3463010.
Zhu et al., “Personalized Transfer of User Preferences for Cross-domain Recommendation,” WSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining, pp. 1507–1515, Oct. 2021, doi: 10.1145/3488560.3498392.
Kang S, Hwang J, Lee D, Yu H. Semi-supervised learning for cross-domain recommendation to cold-start users. InProceedings of the 28th ACM international conference on information and knowledge management 2019 Nov 3 (pp. 1563-1572).
Khazaei M, Ashrafi-Payaman N. An Unsupervised Anomaly Detection Model for Weighted Heterogeneous Graph. Journal of AI and Data Mining. 2023 Apr 1;11(2):237-45.
Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine. 2013 Apr 5;30(3):83-98.
Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Advances in neural information processing systems. 2017;30.
Wang, X. He, L. Nie, and T.-S. Chua, “Item Silk Road: Recommending Items from Information Domains to Social Users,” SIGIR 2017 - Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 185–194, Jun. 2017, doi: 10.1145/3077136.3080771.
Cui, T. Wei, Y. Zhang, and Q. Zhang, “HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation,” ORSUM@RecSys, 2020.
Xu K, Xie Y, Chen L, Zheng Z. Expanding relationship for cross domain recommendation. InProceedings of the 30th ACM International Conference on Information & Knowledge Management 2021 Oct 26 (pp. 2251-2260).
Grover A, Leskovec J. node2vec: Scalable feature learning for networks. InProceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining 2016 Aug 13 (pp. 855-864).
Zhao, C. Li, R. Xiao, H. Deng, and A. Sun, “CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect Transfer Network,” SIGIR 2020 - Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 229–238, May 2020, doi: 10.1145/3397271.3401169.