[1] J. Smith and R. Johnson, "Advances in graph embedding techniques for efficient analysis," Journal of Machine Learning Research, vol. 25, no. 3, pp. 45–60, 2024
[2] L. Chen and S. Kumar, "Dimensionality reduction in graphs: Methods and applications," IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 5, pp. 1012–1025, 2024.
[3] Wang, Y., & Li, J. (2023). Graph embedding techniques for complex network analysis: A comprehensive review. IEEE Transactions on Neural Networks and Learning Systems, 34(1), 15-32.
[4] Zhang, H., & Chen, L. (2023). Advancements in node classification using graph embedding methods. Journal of Machine Learning Research, 24(2), 123-145.
[5] Liu, X., & Zhao, Y. (2023). Link prediction in social networks through graph embedding: A survey. ACM Computing Surveys, 55(3), Article 45.
[6] Wang, F., & Zhang, T. (2023). Fuzzy logic-based graph embeddings for uncertain networks. IEEE Transactions on Fuzzy Systems, 31(2), 245-258
[7] Chen, L., & Yang, H. (2023). Modeling complex relationships in heterogeneous graphs using fuzzy embeddings. Knowledge-Based Systems, 256, Article 110234.
[8] Li, J., & Xu, K. (2023). Enhancing graph representation with fuzzy logic: A survey. ACM Transactions on Intelligent Systems and Technology, 14(3), Article 56.
[9] M. Belkin and P. Niyogi/ "Laplacian eigenmaps for dimensionality reduction and data representation/" Neural computation/ vol. 15/ no. 6/ pp. 1373-1396/ 2003.
[10] R. R. Coifman and S. Lafon/ "Diffusion maps/" Applied and computational harmonic analysis/ vol. 21/ no. 1/ pp. 5-30/ 2006.
[11] M. Coskun/ "A high order proximity measure for linear network embedding/" Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi/ vol. 11/ no. 3/ pp. 477-483/ 2022.
[12] D. D. Lee and H. S. Seung/ "Learning the parts of objects by non-negative matrix factorization/" nature/ vol. 401/ no. 6755/ pp. 788-791/ 1999.
[13] B. Perozzi/ R. Al-Rfou/ and S. Skiena/ "Deepwalk: Online learning of social representations/" in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining/ 2014/ pp. 701-710.
[14] A. Grover and J. Leskovec/ "node2vec: Scalable feature learning for networks/" in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining/ 2016/ pp. 855-864.
[15] B. Perozzi/ V. Kulkarni/ and S. Skiena/ "Walklets: Multiscale graph embeddings for interpretable network classification/" arXiv preprint arXiv:1605.02115/ pp. 043238-23/ 2016.
[16] P. Veličković/ G. Cucurull/ A. Casanova/ A. Romero/ P. Lio/ and Y. Bengio/ "Graph attention networks/" arXiv preprint arXiv:1710.10903/ 2017.
[17] W. Hamilton/ Z. Ying/ and J. Leskovec/ "Inductive representation learning on large graphs/" Advances in neural information processing systems/ vol. 30/ 2017.
[18] L. A. Zadeh/ "Fuzzy sets/" Information and Control/ 1965.
[19] H. Liu/ T. Zhu/ F. Shang/ Y. Liu/ D. Lv/ and S. Yang/ "Deep fuzzy graph convolutional networks for PolSAR imagery pixelwise classification/" IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing/ vol. 14/ pp. 504-514/ 2020.
[20] Z. Yang, W. Cohen, and R. Salakhudinov, "Revisiting semi-supervised learning with graph embeddings," in International Conference on Machine Learning, PMLR, Jun. 2016, pp. 40–48.
[21] A. K. McCallum/ K. Nigam/ J. Rennie/ and K. Seymore/ "Automating the construction of internet portals with machine learning/" Information Retrieval/ vol. 3/ pp. 127-163/ 2000.
[22] D. Bo/ X. Wang/ C. Shi/ M. Zhu/ E. Lu/ and P. Cui/ "Structural deep clustering network/" in Proceedings of the web conference 2020/ 2020/ pp. 1400-1410.
[23] B. Rozemberczki/ C. Allen/ and R. Sarkar/ "Multi-scale attributed node embedding/" Journal of Complex Networks/ vol. 9/ no. 2/ p. cnab014/ 2021.