[1] L. Zhang, and B. Liu. “Sentiment analysis and opinion mining,” Encyclopedia of Machine Learning and Data Science, Springer, New York, pp. 1-13, 2023, doi: 10.1007/978-1-4899-7502-7_907-2.
[2] M. M. Agüero-Torales, J. I. A. Salas, and A. G. López-Herrera, “Deep learning and multilingual sentiment analysis on social media data: An overview,” Applied Soft Computing, vol. 107, p. 107373, 2021, doi: 10.1016/j.asoc.2021.107373.
[3] N. A. Sharma, A. S. Ali, and M. A. Kabir, “A review of sentiment analysis: tasks, applications, and deep learning techniques,” International Journal of Data Science and Analytics, pp. 1–38, 2024, doi: 10.1007/s41060-024-00594-x.
[4] T. Body, X. Tao, Y. Li, L. Li, and N. Zhong, “Using back-and-forth translation to create artificial augmented textual data for sentiment analysis models,” Expert Systems with Applications, vol. 178, p. 115033, 2021, doi: 10.1016/j.eswa.2021.115033.
[5] M. Mir, and S. Noferesti, “Using data augmentation techniques for sentiment analysis of users’ opinions on reopening of schools during the COVID-19 epidemic,” Signal and Data Processing, vol. 21, no. 2, pp. 3–14, 2024, doi: 10.61186/jsdp.21.2.3 [In Persian].
[6] J. Wei, and K. Zou, “EDA: Easy data augmentation techniques for boosting performance on text classification tasks,” in Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), Hong Kong, China, 2019, pp. 6382–6388, doi: 10.18653/v1/D19-1670.
[7] H. Youneszadeh Haghighi, and S. Noferesti, “Text augmentation based on operation weighting using genetic algorithm,” Scientia Iranica, 2025, doi: 10.24200/sci.2025.65358.9440.
[8] G. Li, H. Wang, Y. Ding, K. Zhou, and X. Yan, “Data augmentation for aspect-based sentiment analysis,” International Journal of Machine Learning and Cybernetics, vol. 14, no. 1, pp. 125–133, 2023.
[9] X. Wu, “Conditional BERT contextual augmentation,” in Computational Science – ICCS 2019, Lecture Notes in Computer Science, Y. Shi et al., Eds. Cham, Switzerland: Springer, 2019, pp. 98–113, doi: 10.1007/978-3-030-22747-0_7.
[10] R. Nair, R. P. Singh, D. Gupta, and P. Kumar, “Evaluating the impact of text data augmentation on text classification tasks using DistilBERT,” Procedia Computer Science, vol. 235, pp. 102–111, 2024, doi: 10.1016/j.procs.2024.04.013.
[11] H. Dai et al., “Auggpt: Leveraging ChatGPT for text data augmentation,” IEEE Transactions on Big Data, 2025, doi: 10.1109/TBDATA.2025.3536934.
[12] M. Mohammadi, M. R. Amin, and S. Tavakoli, “Boosting Sentiment Analysis in Persian through a GAN-Based Synthetic Data Augmentation Method,” in Proc. of the 1st Workshop on NLP for Languages Using Arabic Script, 2025, pp. 54-63.
[13] L. Xu, H. Xie, S. J. Qin, F. L. Wang, and X. Tao, “Exploring ChatGPT-based augmentation strategies for contrastive aspect-based sentiment analysis,” IEEE Intelligent Systems, vol. 40, no. 1, pp. 69–76, 2025, doi: 10.1109/MIS.2024.3508432.
[14] G. A. Miller, “WordNet: A lexical database for English,” Communications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.
[15] M. Xu, Q. Zhong, and J. Liu, “LLM-as-an-Augmentor: Improving the data augmentation for aspect-based sentiment analysis with large language models,” in Poster Volume II, Computational Intelligence and Intelligent Computing (ICIC 2024), Cham, Switzerland: Springer, 2024.
[16] S. Kwon and Y. Lee, “Explainability-based mix-up approach for text data augmentation,” ACM Transactions on Knowledge Discovery from Data, vol. 17, no. 1, pp. 1–14, 2023, doi: 10.1145/3533048.
[17] Taheri, A. Zamanifar, and A. Farhadi, “Enhancing aspect-based sentiment analysis using data augmentation based on back-translation,” International Journal of Data Science and Analytics, vol. 19, pp. 1-26, 2024. doi:10.1007/s41060-024-00622-w.
[18] “Dataheart”. [Online]. Available: (accessed Dec. 2024).
[19] “Dataheart”. [Online]. Available: http://dataheart.ir/article/3362/ (accessed Aug. 2025).
[20] R. Dehkharghani. “Labeled-Sentences.” [Online].Available:
http://myweb.sabanciuniv.edu/rdehkharghani/files/2018/08/Labeled-Sentences.xlsx (accessed April. 2025).